Blinder-Oaxaca decomposition Number of obs = 53196
Model = linear
Group 1: ptdtrace = 0 N of obs 1 = 6311
Group 2: ptdtrace = 1 N of obs 2 = 46885
------------------------------------------------------------------------------
hes17 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
overall |
group_1 | 1.965774 .0022894 858.64 0.000 1.961287 1.970261
group_2 | 1.587608 .0022735 698.31 0.000 1.583152 1.592064
difference | .3781661 .0032265 117.21 0.000 .3718423 .3844899
endowments | .1760924 .0043934 40.08 0.000 .1674814 .1847033
coefficients | -.0349913 .0079421 -4.41 0.000 -.0505574 -.0194251
interaction | .237065 .0086188 27.51 0.000 .2201724 .2539576
-------------+----------------------------------------------------------------
endowments |
peeduca | .0198165 .0010418 19.02 0.000 .0177746 .0218585
pesex | -.0862047 .0018679 -46.15 0.000 -.0898658 -.0825437
peage | .0924792 .0013127 70.45 0.000 .0899064 .0950519
prexplf | .0663797 .0011711 56.68 0.000 .0640843 .0686751
pemaritl | -.1911253 .0024911 -76.72 0.000 -.1960079 -.1862428
hufaminc | .274747 .0035947 76.43 0.000 .2677015 .2817925
-------------+----------------------------------------------------------------
coefficients |
peeduca | .2007785 .1228463 1.63 0.102 -.0399959 .4415528
pesex | -.6902801 .0206538 -33.42 0.000 -.7307608 -.6497994
peage | -.4944092 .0204369 -24.19 0.000 -.5344648 -.4543536
prexplf | .3632566 .0245264 14.81 0.000 .3151857 .4113276
pemaritl | -.4724507 .0153115 -30.86 0.000 -.5024606 -.4424407
hufaminc | -.5100336 .0220429 -23.14 0.000 -.5532369 -.4668302
_cons | 1.568147 .1264175 12.40 0.000 1.320373 1.815921
-------------+----------------------------------------------------------------
interaction |
peeduca | .0082431 .0050445 1.63 0.102 -.001644 .0181302
pesex | .2326806 .0071014 32.77 0.000 .2187621 .2465991
peage | -.1198569 .0050845 -23.57 0.000 -.1298224 -.1098914
prexplf | -.0405381 .0028074 -14.44 0.000 -.0460405 -.0350358
pemaritl | .348351 .0113677 30.64 0.000 .3260708 .3706312
hufaminc | -.1918147 .0083619 -22.94 0.000 -.2082037 -.1754256
------------------------------------------------------------------------------
group1为男性,group2为女性,比较的的是两者的工资差
coefficients的值为负数,可是按照分析应该为正的才对,请问该怎么办?
如果数据的R方值太小 有什么办法提高吗?