<P>斯坦福大学Amir Dembo的随机过程讲义</P>
<P> 目 录</P>
<P>Chapter 1. Probability, measure and integration<br>1.1. Probability spaces and σ-fields<br>1.2. Random variables and their expectation<br>1.3. Convergence of random variables<br>1.4. Independence, weak convergence and uniform integrability<br></P>
<P>Chapter 2. Conditional expectation and Hilbert spaces<br>2.1. Conditional expectation: existence and uniqueness<br>2.2. Hilbert spaces<br>2.3. Properties of the conditional expectation<br>2.4. Regular conditional probability<br></P>
<P>Chapter 3. Stochastic Processes: general theory<br>3.1. Definition, distribution and versions<br>3.2. Characteristic functions, Gaussian variables and processes<br>3.3. Continuity, separability and measurability<br></P>
<P>Chapter 4. Martingales and stopping times<br>4.1. Discrete time martingales and filtrations<br>4.2. Continuous time martingales and right continuous filtrations<br>4.3. Stopping times and the optional stopping theorem<br>4.4. Martingale representations and inequalities<br>4.5. Martingales: convergence theorems and applications<br>4.6. Branching processes: extinction probabilities<br></P>
<P>Chapter 5. The Brownian motion<br>5.1. Brownian motion: definition and construction<br>5.2. The reflection principle and Brownian hitting times<br>5.3. Smoothness and variation of the Brownian sample path<br></P>
<P>Chapter 6. Markov, Poisson and Jump processes<br>6.1. Markov chains and processes<br>6.2. Poisson process, Exponential inter-arrivals and order statistics<br>6.3. Markov jump processes</P>
<P> </P>
<P>
<br></P>
<P></P>
[此贴子已经被作者于2007-4-22 19:31:00编辑过]