角平分线模型
模型 4 角平分线+平行线
如图,P 是∠MON 的平分线上一点,过点 P 作 PQ∥ON,交 OM 于点 Q。
结论:△POQ 是等腰三角形。
模型证明
∵PQ∥ON
∴∠PON=∠OPQ
又∵OP 是∠MON 的平分线
∴∠POQ=∠PON
∴∠POQ=∠OPQ
∴△POQ是等腰三角形
模型分析
有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。
模型实例
解答下列问题:
(1)如图①所示,在△ABC 中,EF∥BC,点 D 在 EF 上,BD、CD 分别平分∠
ABC、∠ACB,写出线段 EF 与 BE、CF 有什么数量关系;
(2)如图②所示,BD 平分∠ABC、CD 平分∠ACG,DE∥BC 交 AB 于点 E,交 AC
于点 F,线段 EF 与 BE、CF 有什么数量关系?并说明理由。
(3)如图③所示,BD、CD 分别为外角∠CBM、∠BCN 的平分线,,DE∥BC 交
AB 延长线于点 E,交 AC 延长线于点 F,直接写出线段 EF 与 BE、CF 有什
么数量关系?
...
附件列表