<P>[UseMoney=8]
<BR>[/UseMoney]</P>
<P>Contents<BR>Chapter 1: Preliminaries 1<BR>1.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<BR>1.2 Concepts of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 3<BR>1.2.1 Almost sure (a.s.) convergence . . . . . . . . . . . . . . . . . . 3<BR>1.2.2 Convergence in Probability . . . . . . . . . . . . . . . . . . . . . 4<BR>1.2.3 Convergence in Lq-norm. . . . . . . . . . . . . . . . . . . . . . . 6<BR>1.2.4 Convergence in Distribution . . . . . . . . . . . . . . . . . . . . 7<BR>1.3 Time Series Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<BR>1.4 Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<BR>1.4.1 Dependent and Identically Distributed Observations . . . . . 14<BR>1.4.2 Dependent and Heterogeneously Distributed Observations. 15<BR>1.4.3 Martingale Difference Process . . . . . . . . . . . . . . . . . . . 16<BR>1.5 Central Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<BR>1.5.1 Dependent and Identically Distributed Observations . . . . . 17<BR>1.5.2 Dependent Heterogeneously Distributed Observations . . . . 18<BR>1.5.3 Martingale Difference Observations . . . . . . . . . . . . . . . . 18<BR>1.6 Elements of Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . 19<BR>Chapter 2: DSGE Models, Solutions and Approximations 27<BR>2.1 Few useful models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<BR>2.1.1 A basic Real Business Cycle (RBC) Model . . . . . . . . . . . 28<BR>2.1.2 Heterogeneous agent models . . . . . . . . . . . . . . . . . . . . 35<BR>2.1.3 Monetary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<BR>2.2 Approximation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<BR>2.2.1 Quadratic approximations . . . . . . . . . . . . . . . . . . . . . . 45<BR>2.2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<BR>2.2.3 Log linear Approximations . . . . . . . . . . . . . . . . . . . . . 51<BR>2.2.4 Second order approximations . . . . . . . . . . . . . . . . . . . . . . 60<BR>2.2.5 Parametrizing expectations . . . . . . . . . . . . . . . . . . . . . 62<BR>2.2.6 A Comparison of methods . . . . . . . . . . . . . . . . . . . . . 65</P>
<P>Chapter 3: Extracting and Measuring Cyclical Information 67<BR>3.1 Statistical Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 69<BR>3.1.1 Traditional methods . . . . . . . . . . . . . . . . . . . . . . . . . 69<BR>3.1.2 Beveridge-Nelson (BN) decomposition . . . . . . . . . . . . . . 69<BR>3.1.3 Unobservable Components (UC) decompositions . . . . . . . 72<BR>3.1.4 Regime shifting decomposition . . . . . . . . . . . . . . . . . . . 75<BR>3.2 Hybrid Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<BR>3.2.1 The Hodrick and Prescott (HP) Filter . . . . . . . . . . . . . . 79<BR>3.2.2 Exponential smoothing (ES) filter . . . . . . . . . . . . . . . . . 86<BR>3.2.3 Moving average (MA) filters . . . . . . . . . . . . . . . . . . . . 88<BR>3.2.4 Band Pass (BP) filters . . . . . . . . . . . . . . . . . . . . . . . . 89<BR>3.3 Economic Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 95<BR>3.3.1 Blanchard and Quah (BQ) Decomposition . . . . . . . . . . . 95<BR>3.3.2 King, Plosser Stock and Watson (KPSW) Decomposition . 97<BR>3.4 Time Aggregation and Cycles . . . . . . . . . . . . . . . . . . . . . . . 99<BR>3.5 Collecting Cyclical Information . . . . . . . . . . . . . . . . . . . . . . 100<BR>Chapter 4: VAR Models 105<BR>4.1 The Wold theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<BR>4.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<BR>4.2.1 Lag Length 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<BR>4.2.2 Lag Length 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115<BR>4.2.3 Nonlinearities and nonnormalities . . . . . . . . . . . . . . . . . 116<BR>4.2.4 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<BR>4.2.5 Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<BR>4.3 Moments and parameter estimation of a VAR(q) . . . . . . . . . . . 119<BR>4.3.1 Companion form representation . . . . . . . . . . . . . . . . . . 119<BR>4.3.2 Simultaneous equations format . . . . . . . . . . . . . . . . . . 121<BR>4.4 Reporting VAR results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<BR>4.4.1 Impulse responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<BR>4.4.2 Variance decomposition . . . . . . . . . . . . . . . . . . . . . . . 124<BR>4.4.3 Historical decomposition . . . . . . . . . . . . . . . . . . . . . . 125<BR>4.4.4 Distribution of Impulse Responses . . . . . . . . . . . . . . . . 125<BR>4.4.5 Generalized Impulse Responses . . . . . . . . . . . . . . . . . . 130<BR>4.5 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<BR>4.5.1 Stationary VARs . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<BR>4.5.2 Nonstationary VARs . . . . . . . . . . . . . . . . . . . . . . . . . 137<BR>4.5.3 Alternative identification schemes . . . . . . . . . . . . . . . . . 139<BR>4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<BR>4.7 Validating DSGE models with VARs . . . . . . . . . . . . . . . . . . . 151</P>
<P>Chapter 5: GMM and Simulation Estimators 157<BR>5.1 Generalized Method of Moment and other standard estimators . . 158<BR>5.2 IV estimation in a linear model . . . . . . . . . . . . . . . . . . . . . . 161<BR>5.3 GMM Estimation: An overview . . . . . . . . . . . . . . . . . . . . . . 167<BR>5.3.1 Asymptotics of GMM estimators . . . . . . . . . . . . . . . . . 168<BR>5.3.2 Estimating the Covariance Matrix . . . . . . . . . . . . . . . . 170<BR>5.3.3 Optimizing the Asymptotic covariance matrix . . . . . . . . . 174<BR>5.3.4 Sequential GMM Estimation . . . . . . . . . . . . . . . . . . . . 175<BR>5.3.5 Two-Step Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 176<BR>5.3.6 Hypotheses Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 177<BR>5.4 GMM estimation of DSGE models . . . . . . . . . . . . . . . . . . . . 181<BR>5.4.1 Some Applied tips . . . . . . . . . . . . . . . . . . . . . . . . . . . 185<BR>5.5 Simulation Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187<BR>5.5.1 The General Problem . . . . . . . . . . . . . . . . . . . . . . . . 188<BR>5.5.2 Simulated Method of Moments Estimator . . . . . . . . . . . 191<BR>5.5.3 Simulated Quasi-Maximum Likelihood/ Indirect Inference . 192<BR>5.5.4 Matching impulse responses . . . . . . . . . . . . . . . . . . . . . . . 196<BR>Chapter 6: Likelihood methods 201<BR>6.1 The Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202<BR>6.2 The Prediction error decomposition of likelihood . . . . . . . . . . . 209<BR>6.2.1 Some Asymptotics of ML estimators . . . . . . . . . . . . . . . 213<BR>6.3 Numerical tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215<BR>6.4 ML estimation of DSGE models . . . . . . . . . . . . . . . . . . . . . . 218<BR>6.5 Two examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227<BR>6.5.1 Does monetary policy react to technolocy shocks? . . . . . . 227<BR>6.5.2 Does fiscal policy help to stabilize the cycle? . . . . . . . . . . 233<BR>Chapter 7: Calibration 235<BR>7.1 A Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236<BR>7.2 The Uncontroversial parts . . . . . . . . . . . . . . . . . . . . . . . . . . 237<BR>7.3 Choosing parameters and stochastic processes . . . . . . . . . . . . . 239<BR>7.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246<BR>7.4.1 Watson’s R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250<BR>7.4.2 Measure of fit based on simulation variability . . . . . . . . . 253<BR>7.4.3 Measures of fit based on sampling variability . . . . . . . . . 256<BR>7.4.4 Measures of fit based on sampling and simulation variability 259<BR>7.5 The sensitivity of the measurement . . . . . . . . . . . . . . . . . . . . 265<BR>7.6 Savings, Investments and Tax cuts: an example . . . . . . . . . . . . 268</P>
<P>Chapter 8: Dynamic Macro Panels 273<BR>8.1 From economic theory to dynamic panels . . . . . . . . . . . . . . . . 274<BR>8.2 Panels with Homogeneous dynamics . . . . . . . . . . . . . . . . . . . 276<BR>8.2.1 Pitfalls of standard methods . . . . . . . . . . . . . . . . . . . . 278<BR>8.2.2 The Correct approach . . . . . . . . . . . . . . . . . . . . . . . . 280<BR>8.2.3 Restricted models . . . . . . . . . . . . . . . . . . . . . . . . . . . 283<BR>8.2.4 Recovering the individual effect . . . . . . . . . . . . . . . . . . 285<BR>8.2.5 Some practical issues . . . . . . . . . . . . . . . . . . . . . . . . . 286<BR>8.3 Dynamic heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288<BR>8.3.1 Average time series estimator . . . . . . . . . . . . . . . . . . . 290<BR>8.3.2 Pooled estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 291<BR>8.3.3 Aggregate time series estimator . . . . . . . . . . . . . . . . . . 294<BR>8.3.4 Average Cross sectional Estimator . . . . . . . . . . . . . . . . 295<BR>8.3.5 Testing for dynamic heterogeneity . . . . . . . . . . . . . . . . 297<BR>8.4 To Pool or not to Pool? . . . . . . . . . . . . . . . . . . . . . . . . . . . 298<BR>8.4.1 What goes wrong with two-step regressions? . . . . . . . . . . 302<BR>8.5 Is Money superneutral? . . . . . . . . . . . . . . . . . . . . . . . . . . . 304<BR>Chapter 9: Introduction to Bayesian Methods 309<BR>9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310<BR>9.1.1 Bayes Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310<BR>9.1.2 Prior Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312<BR>9.2 Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318<BR>9.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319<BR>9.3.1 Inference with Multiple Models . . . . . . . . . . . . . . . . . . 322<BR>9.3.2 Normal Approximations . . . . . . . . . . . . . . . . . . . . . . . 323<BR>9.3.3 Testing hypotheses/relative fit of different models . . . . . . 325<BR>9.3.4 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327<BR>9.4 Hierarchical and Empirical Bayes models . . . . . . . . . . . . . . . . 328<BR>9.4.1 Empirical Bayes methods . . . . . . . . . . . . . . . . . . . . . . 332<BR>9.4.2 Meta analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333<BR>9.5 Posterior simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336<BR>9.5.1 Normal posterior analysis . . . . . . . . . . . . . . . . . . . . . . 336<BR>9.5.2 Basic Posterior Simulators . . . . . . . . . . . . . . . . . . . . . 337<BR>9.5.3 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . 340<BR>9.6 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352<BR>9.7 Estimating Returns to scale: Spain (1979-1999) . . . . . . . . . . . . 352<BR>Chapter 10: Bayesian VARs 355<BR>10.1 The Likelihood function of an m variable VAR(q) . . . . . . . . . . 356<BR>10.2 Priors for VARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357<BR>10.2.1 Least square under uncertain restrictions . . . . . . . . . . . . 358<BR>10.2.2 The Minnesota prior . . . . . . . . . . . . . . . . . . . . . . . . . 359</P>
<P>10.2.3 Adding other prior restrictions . . . . . . . . . . . . . . . . . . 363<BR>10.2.4 Some Applied tips . . . . . . . . . . . . . . . . . . . . . . . . . . . 365<BR>10.2.5 Priors derived from DSGE models . . . . . . . . . . . . . . . . 366<BR>10.2.6 Probability distributions for forecasts: Fan Charts . . . . . . 370<BR>10.3 Structural BVARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372<BR>10.4 Time Varying Coefficients BVARs . . . . . . . . . . . . . . . . . . . . 379<BR>10.4.1 Minnesota style prior . . . . . . . . . . . . . . . . . . . . . . . . . 380<BR>10.4.2 Hierarchical prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 382<BR>10.5 Panel VAR models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384<BR>10.5.1 Univariate dynamic panels . . . . . . . . . . . . . . . . . . . . . 385<BR>10.5.2 Endogenous grouping . . . . . . . . . . . . . . . . . . . . . . . . . 388<BR>10.5.3 Panel VARs with interdependencies . . . . . . . . . . . . . . . 392<BR>10.5.4 Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395<BR>10.5.5 Impulse responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 396<BR>Chapter 11: Bayesian time series and DSGE models 399<BR>11.1 Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400<BR>11.1.1 Arbitrage Pricing (APT) Models . . . . . . . . . . . . . . . . . 403<BR>11.1.2 Conditional Capital Asset Pricing models (CAPM) . . . . . 406<BR>11.2 Stochastic Volatility Models . . . . . . . . . . . . . . . . . . . . . . . . 408<BR>11.3 Markov switching models . . . . . . . . . . . . . . . . . . . . . . . . . . 414<BR>11.3.1 A more complicated structure . . . . . . . . . . . . . . . . . . . 415<BR>11.3.2 A General Markov switching specification . . . . . . . . . . . 418<BR>11.4 Bayesian DSGE Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 420<BR>11.4.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422<BR>11.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424<BR>11.4.3 A few applied tips . . . . . . . . . . . . . . . . . . . . . . . . . . . 432<BR>11.4.4 Comparing the quality of models to the data . . . . . . . . . 433<BR>11.4.5 DSGEs and VARs, once again . . . . . . . . . . . . . . . . . . . 438<BR>11.4.6 Non linear specifications . . . . . . . . . . . . . . . . . . . . . . . 439<BR>11.4.7 Which approach to use? . . . . . . . . . . . . . . . . . . . . . . . 440<BR>Appendix 443</P>
<P>Preface<BR>There has been a tremendous improvement over the last twenty years in the mathematical,<BR>statistical, probabilistic and computational tools available to applied macroeconomists.<BR>This extended set of tools has changed the way researchers have approached the problem of<BR>testing models, validate theories or simply collect regularities from the data. The rational<BR>expectation and the calibration revolutions have also forced researchers to try to build a<BR>more solid bridge between theoretical and applied work, a bridge which was often missing<BR>in much of the applied exercises conducted in the 1970s and the 1980s.<BR>This books attempts to bring together dynamic general equilibrium theory, data analysis,<BR>advanced econometric and computational methods to provide a comprehensive set of<BR>techniques which can be used to address questions of interest to academics, business and<BR>central bank economists in the fields of macroeconomics, business cycle analysis, growth<BR>theory, monetary, financial, and international economics. The point of view taken is the<BR>one of an applied economist facing time series data (at times a panel of them, coming from<BR>different countries), who is interested in verifying the prediction of dynamic economic theories<BR>and in advising model builders and theorists on how to respecify existing constructions<BR>to obtain better match between the model and the data. The book illustrates a number<BR>of techniques which can be used to address the questions of interest, agnostically evaluates<BR>their usefulness in bringing out information relevant to the users, provides examples<BR>where the methods work (and where they don’t) and points out problems when approaches<BR>developed for microeconomic data are used in time series frameworks.<BR>Unavoidably, a modern treatment of such a complex topic requires a quantitative perspective,<BR>a solid dynamic theory background and the development of both empirical and<BR>numerical methods. A quantitative perspective is needed to give empirical content to theories;<BR>empirical methods must provide an effective link between economic theory and the<BR>data; numerical techniques help us to solve complicated dynamic stochastic general equilibrium<BR>(DSGE) models and to implement advanced econometric estimators, both in the<BR>classical and Bayesian tradition. In some cases empirical methods are intimately linked with<BR>the numerical procedure chosen to solve the model. In others, they are only constrained by<BR>the restrictions economic theory imposes on the data.<BR>Given this background, the structure of this book is quite different from the typical<BR>graduate textbook both in macroeconomics and in econometrics. Rather than listing a series<BR>of estimators and their properties for different data generating processes, this book starts<BR>from a class of DSGE models, finds an approximate (linear) representation for the decision<BR>rules and describes methods needed to estimate/choose their parameters, to examine their<BR>fit to the data and to conduct interesting policy exercises. The first three chapters of the<BR>book are introductory and review material extensively used in later chapters. In particular,<BR>chapter 1 presents basic time series and probability concepts, a list of useful law of large<BR>numbers and central limit theorems, which are employed in the discussions of chapters 4<BR>to 8, and gives a brief overview of the basic elements of spectral analysis, heavily used<BR>in chapters 3, 5 and 7. Chapter 2 presents a number of macroeconomic models currently</P>
<P>used in the profession and discusses numerical methods needed to solve them. Most of<BR>the examples and exercises of this book are based on versions of these models. Chapter<BR>3 discusses procedures used to obtain interesting information about secular and cyclical<BR>fluctuations in the data.<BR>In the remaining chapters we present various methodologies to confront models to the<BR>data and discuss how they can be used to address other interesting economic questions.<BR>Given our empirical perspective, formal results are often stated without proofs and emphasis<BR>is given to their use in particular macroeconomic applications. Chapter 4 describes<BR>minimalist vector autoregressive (VAR) approaches, where a limited amount of economic<BR>theory is used to structure the data. Chapter 5 presents limited information methodologies<BR>such as Generalized Methods of Moments (GMM), Simulated Method of Moments (SMM)<BR>and general simulation approaches. Chapter 6 examines full information Maximum Likelihood<BR>and in chapter 7 Calibration techniques are discussed. In chapter 8, we then branch<BR>into dynamic macro panel methods, which can be used to effectively study cross-country<BR>issues, and conclude the book with an extensive description of Bayesian methods and their<BR>use for VAR and panel VAR models, for advanced time series specifications, and for DSGE<BR>models (Chapters 9 to 11).<BR>The approach of this book differs, for example, from the one of Hamilton (1994) or<BR>Hayashi (2002), both of which are primarily directed to econometricians and are not directly<BR>concerned with the question of validating dynamic economic models. The emphasis also<BR>differs from more macroeconomic oriented books like Sargent and Liungqvist (2001) or<BR>computationally oriented books like Judd (1998) or Miranda and Fackler (2002) in that<BR>empirical methods play a larger role and the connection between theory, numerical and<BR>empirical tools is explicitely spelled out.<BR>The book is largely self-contained but presumes a basic knowledge of modern macroeconomic<BR>theory (say, one or two quarters of a Ph.D. course in macroeconomics), of standard<BR>econometrics (say, a quarter of a Ph. D. course in econometrics) and assumes that the reader<BR>has or will acquire in the process some programming skills (e.g., RATS, Matlab, Gauss).<BR>The book is thought for a year long sequence starting from second semester of a first year<BR>econometric/ applied macroeconomics course and continuing with the first semester of a<BR>second year macroeconometric course. Roughly, the first 5 chapters and the seventh could<BR>be thought in first part, chapter 6 and the last four in the second part. This is the setup I<BR>have used in teaching this material over a number years and it seems the natural division<BR>between what I consider basic and advanced material.<BR>Ph. D. students at Brown University, University of Rochester, UniversitatPompeu<BR>Fabra, Universita’ di Napoli, University of Porto, University of Southampton, London Business<BR>School, Bocconi University, Universita’ Milano-Bicocca; participants in various editions<BR>of the Barcelona Summer School in Macroeconomics (BSSM), of the European Economic<BR>Association (EEA) Summer school in Macroeconomics, Paris, of the Center for Financial<BR>Studies (CFS) Summer school in Macroeconomics, Eltville (Germany), of the ZEI Summer<BR>School in Bonn, of the course for Central Bankers in Genzersee (Switzerland); and attendants<BR>of various intense and short courses at the ECB, Bank of England, Bank of Italy,</P>
<P>Bank of Canada, Bank of Hungary, Riksbank, Bundesbank and European Business Cycle<BR>Network (EABCN) have passed through several versions of this book and played around<BR>with some of the codes which implement the procedures discussed in the book with some<BR>practical examples. Some suffered; some enthusiastically embraced the philosophy of this<BR>book; some were critical; some made useful comments and helped in debugging the codes,<BR>all of them were encouraging. To all goes my thanks. I have learned a lot through the<BR>process of writing this book and teaching its material, probably as much as students have<BR>learned from the lectures and practical sessions.<BR>Three people taught me to approach empirical problems in a sensible but rigorous way,<BR>combining economic theory with advanced statistical tools and numerical methods, and to<BR>be suspicious and critical of analyses which leave out one of the main ingredients of the cake.<BR>Christopher Sims and Tom Sargent where of crucial importance in making me understand<BR>that the grey area at the crossroad between theory and econometrics is a difficult but<BR>exciting place to be and their uncompromising intellectual curiosity, their stern intuition<BR>and their deep understanding of economic and policy issues has been an extraordinary<BR>lever behind this book. Adrian Pagan shaped my (somewhat cynical) view of what should<BR>and can be done with the data and the models. I always like to argue with him because<BR>his unconventional views helped to bring out often forgotten methodological and practical<BR>aspects. And on most issues of interest to applied macroeconomists he was more often<BR>right than wrong. This book would not have been possible without their fundamental<BR>inputs. As mentors, there was no one comparable to them. I also have an intellectual debit<BR>with Ed Prescott. It was his brusc refusal to follow the traditional econometric track that<BR>made me understand the need to create a different and more solid link between theory,<BR>econometric and statistical techniques and the data. Several of my collegues, in particular<BR>Albert Marcet and Morten Ravn, Jordi Gali, Lucrezia Reichlin, Harald Uhlig, Carlo Favero,<BR>Marco Maffezzoli and Luca sala contributed to form and develop some of the ideas presented<BR>in the book. A special thanks goes to Tom Doan, Marco del Negro, Chris Sims, Kirdan<BR>Lees and Adrian Pagan, who spotted mistakes and imprecisions in earlier versions of the<BR>manuscript.<BR></P>