=== Run information ===
  
 Scheme: weka.classifiers.rules.DecisionTable -X 1 -S 5
 Relation: iris
 Instances: 150
 Attributes: 5
  sepallength
  sepalwidth
  petallength
  petalwidth
  class
 Test mode: 10-fold cross-validation
  
 === Classifier model (full training set) ===
  
 Decision Table:
  
 Number of training instances: 150
 Number of Rules : 6
 Non matches covered by Majority class.
 Best first search for feature set,
 terminated after 5 non improving subsets.
 Evaluation (for feature selection): CV (leave one out) 
 Feature set: 3,4,5
  
 Time taken to build model: 0.05 seconds
  
 === Stratified cross-validation ===
 === Summary ===
  
 Correctly Classified Instances 139 92.6667 %
 Incorrectly Classified Instances 11 7.3333 %
 Kappa statistic 0.89 
 Mean absolute error 0.0602
 Root mean squared error 0.2107
 Relative absolute error 13.5405 %
 Root relative squared error 44.6992 %
 Total Number of Instances 150 
  
 === Detailed Accuracy By Class ===
  
 TP Rate FP Rate Precision Recall F-Measure Class
  1 0 1 1 1 Iris-setosa
  0.88 0.05 0.898 0.88 0.889 Iris-versicolor
  0.9 0.06 0.882 0.9 0.891 Iris-virginica
  
 === Confusion Matrix ===
  
  a b c <-- classified as
  50 0 0 | a = Iris-setosa
  0 44 6 | b = Iris-versicolor
  0 5 45 | c = Iris-virginica
 这是用WEKA分类分析的结果,老师要求对数据进行说明,可是好多东西不明白哦~
 诸如TP rate……请哪位好心人能专业地说明一下以上数据,做个范例,小女子感激不尽……
