全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学
4340 7
2007-05-23
详细介绍了如何用SAS/EM进行分析,独家发布.

119367.rar
大小:(10.16 MB)

只需: 30 个论坛币  马上下载

本附件包括:

  • effective_web_mining.pdf



Effective Web Mining:Attracting and Keeping Valued Cyber Consumers (632 pages)
Course Notes of CustomerRelationship Management Training
Using Data Mining for Customer Relationship Management Using SAS's award winning statistical, data mining and information delivery software you will learn how to build models that business users and campaign managers can utilize. For people new to CRM or business decision makers, the Customer Relationship Management Through Data Mining seminar provides a solid CRM background and high-level overview of how data mining techniques can be applied to acquire and retain customers. The curriculum includes courses detailing how to prepare, create models on, and analyze customer and web data.
Course Description
This course introduces data mining methodology for solving business problems arising from commercial use of the World Wide Web. Enterprise Miner™ software provides a foundation for Web mining projects.
Additional tools from other SAS products, including SAS/STAT® and SAS/ETS® software, are used to drive applications relevant to e-commerce. The course emphasizes business problems in e-commerce and illustrates the solution of these problems using predictive modeling techniques applied to Web log,transactional, marketing, and operational data.
Table of Contents
Course Description....................................................................................................................vii
Prerequisites ..............................................................................................................................viii
General Conventions ................................................................................................................... ix
Chapter 1 Introduction ........................................................................................... 1-1
1.1 Web Sites and Web Solutions ..........................................................................................1-3
1.2 A Selection of Business Pains........................................................................................1-22
1.3 A Collection of Data Mining Tools................................................................................1-31
1.4 Introduction to Predictive Modeling..............................................................................1-38
1.5 The Apache Web Server (Optional) ...............................................................................1-66
1.6 References.....................................................................................................................1-73
Chapter 2 Data ........................................................................................................ 2-1
2.1 Types of Data ...................................................................................................................2-3
2.2 Web Log Data ................................................................................................................2-44
2.3 Cookies and Other Data Collection Tools......................................................................2-71
2.4 Proactive Web Data Gathering: Bots and Intelligent Agents .........................................2-81
2.5 Data Preparation for Predictive Modeling .....................................................................2-91
2.6 Exercises ........................................................................................................................2-99
2.7 References....................................................................................................................2-100
Chapter 3 Knowing Your Customers .................................................................... 3-1
3.1 Web Site Statistics for Evaluating Visitors ......................................................................3-3
3.2 Introduction to Clustering and Segmentation ................................................................3-53
3.3 Customer Profiling.........................................................................................................3-79
3.4 Exercises ......................................................................................................................3-119
3.5 References....................................................................................................................3-120
Chapter 4 Attracting Cyber Consumers ............................................................... 4-1
4.1 Introduction to Web Site Marketing.................................................................................4-3
4.2 Evaluating Visitor Behavior...........................................................................................4-51
4.3 Evaluating Web Page Design .........................................................................................4-69
4.4 Comparing Your Web Site to Competitors...................................................................4-106
4.5 Exercises ......................................................................................................................4-113
4.6 References....................................................................................................................4-114
Chapter 5 Evaluating Cyber Consumers .............................................................. 5-1
5.1 Descriptive Techniques for Evaluating Buyer Behavior..................................................5-3
5.2 Estimating the Propensity to Buy ..................................................................................5-21
5.3 Estimating the Propensity to Abandon the Site..............................................................5-33
5.4 Model-Based Selection of Banner Ads ..........................................................................5-54
5.5 Exercises ........................................................................................................................5-75
5.6 References.....................................................................................................................5-76
Chapter 6 Keeping Cyber Consumers .................................................................. 6-1
6.1 Data Driven Service for Shopping Comparison Sites......................................................6-3
6.2 Introduction to Recommender Systems .........................................................................6-19
6.3 Recommender System Applications ..............................................................................6-27
6.4 Exercises ........................................................................................................................6-55
6.5 References.....................................................................................................................6-56
Appendix A Data....................................................................................................... A-1
A.1 Ad Campaign Data..........................................................................................................A-3
A.2 Banner Ad Data...............................................................................................................A-4
A.3 Buy Data and Abandon Data...........................................................................................A-6
A.4 Customers Data...............................................................................................................A-9
A.5 Direct Mail Data ........................................................................................................... A-11
A.6 Financial Services Data.................................................................................................A-13
A.7 Movie Data ...................................................................................................................A-15
A.8 Path Analysis Data ........................................................................................................A-18
A.9 Profile Data ...................................................................................................................A-19
A.10 Stochastic Process Data ................................................................................................A-21
A.11 Web Logs ......................................................................................................................A-22
A.12 Web Time Series Data...................................................................................................A-23
Appendix B SAS Programs ..................................................................................... B-1
B.1 The SAS System ............................................................................................................. B-3
B.2 Reading Web Log Files................................................................................................... B-9
B.3 A SAS Robot................................................................................................................. B-14
B.4 The Output Delivery System and HTML ..................................................................... B-21
B.5 Web Stats....................................................................................................................... B-23
B.6 Time Series Methods .................................................................................................... B-27
B.7 Analysis of Data from Designed Experiments.............................................................. B-30
B.8 Transition Probabilities for Stochastic Processes.......................................................... B-31
B.9 Logistic Regression....................................................................................................... B-32
B.10 Data Driven Web Services ............................................................................................ B-34
B.11 Enterprise Miner Macro Variables and Score Code...................................................... B-40
Appendix C SEMMA Methodology.......................................................................... C-1
C.1 Enterprise Miner SEMMA Methodology ....................................................................... C-3


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-10-28 07:05:37
非常想买,可是太贵了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-11-10 09:19:50
真的是有点贵,攒攒钱再说了。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-4-30 13:55:22
抢得了,30块
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-10-19 03:33:57
太贵了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-10-25 22:01:47
too expensive
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群