贝叶斯先验概率可以这么表示,看这个例子——
distinguish.bayes <- function
#多个总体判别的贝叶斯判别程序
(TrnX, TrnG, p = rep(1, length(levels(TrnG))),
#输入 TrnX 表示训练样本 样本输入格式为数据框
#TrnG是因子变量 表示训练样本的分类情况
#输入变量p是先验概率 缺省值为1
TstX = NULL, var.equal = FALSE){
if ( is.factor(TrnG) == FALSE){
mx <- nrow(TrnX); mg <- nrow(TrnG)
TrnX <- rbind(TrnX, TrnG)
TrnG <- factor(rep(1:2, c(mx, mg)))
}
if (is.null(TstX) == TRUE) TstX <- TrnX
if (is.vector(TstX) == TRUE) TstX <- t(as.matrix(TstX))
else if (is.matrix(TstX) != TRUE)
TstX <- as.matrix(TstX)
if (is.matrix(TrnX) != TRUE) TrnX <- as.matrix(TrnX)
nx <- nrow(TstX)
blong <- matrix(rep(0, nx), nrow=1,
dimnames=list("blong", 1:nx))
g <- length(levels(TrnG))
mu <- matrix(0, nrow=g, ncol=ncol(TrnX))
for (i in 1:g)
mu[i,] <- colMeans(TrnX[TrnG==i,])
D <- matrix(0, nrow=g, ncol=nx)
if (var.equal == TRUE || var.equal == T){
for (i in 1:g){
d2 <- mahalanobis(TstX, mu[i,], var(TrnX))
D[i,] <- d2 - 2*log(p)
}
}
else{
for (i in 1:g){
S <- var(TrnX[TrnG==i,])
d2 <- mahalanobis(TstX, mu[i,], S)
D[i,] <- d2 - 2*log(p)-log(det(S))
}
}
for (j in 1:nx){
dmin <- Inf
for (i in 1:g)
if (D[i,j] < dmin){
dmin <- D[i,j]; blong[j] <- i
}
}
blong
}
分位点的话,正态分布的分位点是——
下侧:
qnorm(0.025, 10)
上侧:
qnorm(0.025, 10)