学习FDA, functional data analysis 超级棒的书。
回复可见更多内容。 包括一本免费的书。
看到坛内有人论坛币要价很高, 发个超便宜的, 这个是自己找的, 不是本坛的途径, 完全符合坛规。 Version: 2011
Contents
1 Introduction 1
1.1 Parametric and Nonparametric Regression . . . . . . . 1
1.2 Polynomial Splines . . . . . . . . . . . . . . . . . . . . . 4
本帖隐藏的内容
thank you for your reply!
免费送:
https://bbs.pinggu.org/thread-2122012-1-1.html
1.3 Scope of This Book . . . . . . . . . . . . . . . . . . . . 7
1.4 The assist Package . . . . . . . . . . . . . . . . . . . . 9
2 Smoothing Spline Regression 11
2.1 Reproducing Kernel Hilbert Space . . . . . . . . . . . . 11
2.2 Model Space for Polynomial Splines . . . . . . . . . . . 14
2.3 General Smoothing Spline Regression Models . . . . . . 16
2.4 Penalized Least Squares Estimation . . . . . . . . . . . 17
2.5 The ssr Function . . . . . . . . . . . . . . . . . . . . . 20
2.6 Another Construction for Polynomial Splines . . . . . . 22
2.7 Periodic Splines . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Thin-Plate Splines . . . . . . . . . . . . . . . . . . . . . 26
2.9 Spherical Splines . . . . . . . . . . . . . . . . . . . . . . 29
2.10 Partial Splines . . . . . . . . . . . . . . . . . . . . . . . 30
2.11 L-splines . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3 Smoothing Parameter Selection and Inference 53
3.1 Impact of the Smoothing Parameter . . . . . . . . . . . 53
3.2 Trade-Offs . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Unbiased Risk . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Cross-Validation and Generalized Cross-Validation . . . 64
3.5 Bayes and Linear Mixed-Effects Models . . . . . . . . . 67
3.6 Generalized Maximum Likelihood . . . . . . . . . . . . 71
3.7 Comparison and Implementation . . . . . . . . . . . . . 72
3.8 Confidence Intervals . . . . . . . . . . . . . . . . . . . . 75
3.8.1 Bayesian Confidence Intervals . . . . . . . . . . . 75
3.8.2 Bootstrap Confidence Intervals . . . . . . . . . . 81
3.9 Hypothesis Tests . . . . . . . . . . . . . . . . . . . . . . 84
3.9.1 The Hypothesis . . . . . . . . . . . . . . . . . . . 84
3.9.2 Locally Most Powerful Test . . . . . . . . . . . . 85
3.9.3 Generalized Maximum Likelihood Test . . . . . . 86
3.9.4 Generalized Cross-Validation Test . . . . . . . . 87
3.9.5 Comparison and Implementation . . . . . . . . . 87
4 Smoothing Spline ANOVA 91
4.1 Multiple Regression . . . . . . . . . . . . . . . . . . . . 91
4.2 Tensor Product Reproducing Kernel Hilbert Spaces . . 92
4.3 One-Way SS ANOVA Decomposition . . . . . . . . . . 93
4.4 Two-Way SS ANOVA Decomposition . . . . . . . . . . 98
4.5 General SS ANOVA Decomposition . . . . . . . . . . . 110
4.6 SS ANOVA Models and Estimation . . . . . . . . . . . 111
4.7 Selection of Smoothing Parameters . . . . . . . . . . . 114
4.8 Confidence Intervals . . . . . . . . . . . . . . . . . . . . 116
4.9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5 Spline Smoothing with Heteroscedastic and/or Correlated Errors 139
5.1 Problems with Heteroscedasticity and Correlation . . . 139
5.2 Extended SS ANOVA Models . . . . . . . . . . . . . . 142
5.3 Variance and Correlation Structures . . . . . . . . . . . 150
5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6 Generalized Smoothing Spline ANOVA 163
6.1 Generalized SS ANOVA Models . . . . . . . . . . . . . 163
6.2 Estimation and Inference . . . . . . . . . . . . . . . . . 164
6.2.1 Penalized Likelihood Estimation . . . . . . . . . 164
6.2.2 Selection of Smoothing Parameters . . . . . . . . 167
6.2.3 Algorithm and Implementation . . . . . . . . . . 168
6.2.4 Bayes Model, Direct GML and Approximate
Bayesian Confidence Intervals . . . . . . . . . . . 170
6.3 Wisconsin Epidemiological Study of Diabetic
Retinopathy . . . . . . . . . . . . . . . . . . . . . . . . 172
6.4 Smoothing Spline Estimation of Variance Functions . . 176
6.5 Smoothing Spline Spectral Analysis . . . . . . . . . . . 182
6.5.1 Spectrum Estimation of a Stationary Process . . 182
6.5.2 Time-Varying Spectrum Estimation of a Locally
Stationary Process . . . . . . . . . . . . . . . . . 183
6.5.3 Epileptic EEG . . . . . . . . . . . . . . . . . . . 185
7 Smoothing Spline Nonlinear Regression 195
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.2 Nonparametric Nonlinear Regression Models . . . . . . 196
7.3 Estimation with a Single Function . . . . . . . . . . . . 197
7.3.1 Gauss–Newton and Newton–Raphson Methods . 197
7.3.2 Extended Gauss–Newton Method . . . . . . . . . 199
7.3.3 Smoothing Parameter Selection and Inference . . 201
7.4 Estimation with Multiple Functions . . . . . . . . . . . 204
7.5 The nnr Function . . . . . . . . . . . . . . . . . . . . . 205
7.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8 Semiparametric Regression 227
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.2 Semiparametric Linear Regression Models . . . . . . . . 228
8.2.1 The Model . . . . . . . . . . . . . . . . . . . . . 228
8.2.2 Estimation and Inference . . . . . . . . . . . . . 229
8.2.3 Vector Spline . . . . . . . . . . . . . . . . . . . . 233
8.3 Semiparametric Nonlinear Regression Models . . . . . . 240
8.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 247
9 Semiparametric Mixed-Effects Models 273
9.1 Linear Mixed-Effects Models . . . . . . . . . . . . . . . 273
9.2 Semiparametric Linear Mixed-Effects Models . . . . . . 274
9.3 Semiparametric Nonlinear Mixed-Effects Models . . . . 283
9.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 288
References 347
Author Index 355
Subject Index 359