全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 R语言论坛
6313 178
2012-11-24
学习FDA, functional data analysis 超级棒的书。

回复可见更多内容。 包括一本免费的书。

看到坛内有人论坛币要价很高, 发个超便宜的, 这个是自己找的, 不是本坛的途径, 完全符合坛规。 Version: 2011
Contents
1 Introduction 1
1.1 Parametric and Nonparametric Regression . . . . . . . 1
1.2 Polynomial Splines . . . . . . . . . . . . . . . . . . . . . 4

本帖隐藏的内容

thank you for your reply!
免费送:
https://bbs.pinggu.org/thread-2122012-1-1.html

1.3 Scope of This Book . . . . . . . . . . . . . . . . . . . . 7
1.4 The assist Package . . . . . . . . . . . . . . . . . . . . 9
2 Smoothing Spline Regression 11
2.1 Reproducing Kernel Hilbert Space . . . . . . . . . . . . 11
2.2 Model Space for Polynomial Splines . . . . . . . . . . . 14
2.3 General Smoothing Spline Regression Models . . . . . . 16
2.4 Penalized Least Squares Estimation . . . . . . . . . . . 17
2.5 The ssr Function . . . . . . . . . . . . . . . . . . . . . 20
2.6 Another Construction for Polynomial Splines . . . . . . 22
2.7 Periodic Splines . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Thin-Plate Splines . . . . . . . . . . . . . . . . . . . . . 26
2.9 Spherical Splines . . . . . . . . . . . . . . . . . . . . . . 29
2.10 Partial Splines . . . . . . . . . . . . . . . . . . . . . . . 30
2.11 L-splines . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3 Smoothing Parameter Selection and Inference 53
3.1 Impact of the Smoothing Parameter . . . . . . . . . . . 53
3.2 Trade-Offs . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Unbiased Risk . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Cross-Validation and Generalized Cross-Validation . . . 64
3.5 Bayes and Linear Mixed-Effects Models . . . . . . . . . 67
3.6 Generalized Maximum Likelihood . . . . . . . . . . . . 71
3.7 Comparison and Implementation . . . . . . . . . . . . . 72
3.8 Confidence Intervals . . . . . . . . . . . . . . . . . . . . 75
3.8.1 Bayesian Confidence Intervals . . . . . . . . . . . 75
3.8.2 Bootstrap Confidence Intervals . . . . . . . . . . 81
3.9 Hypothesis Tests . . . . . . . . . . . . . . . . . . . . . . 84
3.9.1 The Hypothesis . . . . . . . . . . . . . . . . . . . 84
3.9.2 Locally Most Powerful Test . . . . . . . . . . . . 85
3.9.3 Generalized Maximum Likelihood Test . . . . . . 86
3.9.4 Generalized Cross-Validation Test . . . . . . . . 87
3.9.5 Comparison and Implementation . . . . . . . . . 87
4 Smoothing Spline ANOVA 91
4.1 Multiple Regression . . . . . . . . . . . . . . . . . . . . 91
4.2 Tensor Product Reproducing Kernel Hilbert Spaces . . 92
4.3 One-Way SS ANOVA Decomposition . . . . . . . . . . 93
4.4 Two-Way SS ANOVA Decomposition . . . . . . . . . . 98
4.5 General SS ANOVA Decomposition . . . . . . . . . . . 110
4.6 SS ANOVA Models and Estimation . . . . . . . . . . . 111
4.7 Selection of Smoothing Parameters . . . . . . . . . . . 114
4.8 Confidence Intervals . . . . . . . . . . . . . . . . . . . . 116
4.9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5 Spline Smoothing with Heteroscedastic and/or Correlated Errors 139
5.1 Problems with Heteroscedasticity and Correlation . . . 139
5.2 Extended SS ANOVA Models . . . . . . . . . . . . . . 142
5.3 Variance and Correlation Structures . . . . . . . . . . . 150
5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6 Generalized Smoothing Spline ANOVA 163
6.1 Generalized SS ANOVA Models . . . . . . . . . . . . . 163
6.2 Estimation and Inference . . . . . . . . . . . . . . . . . 164
6.2.1 Penalized Likelihood Estimation . . . . . . . . . 164
6.2.2 Selection of Smoothing Parameters . . . . . . . . 167
6.2.3 Algorithm and Implementation . . . . . . . . . . 168
6.2.4 Bayes Model, Direct GML and Approximate
Bayesian Confidence Intervals . . . . . . . . . . . 170
6.3 Wisconsin Epidemiological Study of Diabetic
Retinopathy . . . . . . . . . . . . . . . . . . . . . . . . 172
6.4 Smoothing Spline Estimation of Variance Functions . . 176
6.5 Smoothing Spline Spectral Analysis . . . . . . . . . . . 182
6.5.1 Spectrum Estimation of a Stationary Process . . 182
6.5.2 Time-Varying Spectrum Estimation of a Locally
Stationary Process . . . . . . . . . . . . . . . . . 183
6.5.3 Epileptic EEG . . . . . . . . . . . . . . . . . . . 185
7 Smoothing Spline Nonlinear Regression 195
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.2 Nonparametric Nonlinear Regression Models . . . . . . 196
7.3 Estimation with a Single Function . . . . . . . . . . . . 197
7.3.1 Gauss–Newton and Newton–Raphson Methods . 197
7.3.2 Extended Gauss–Newton Method . . . . . . . . . 199
7.3.3 Smoothing Parameter Selection and Inference . . 201
7.4 Estimation with Multiple Functions . . . . . . . . . . . 204
7.5 The nnr Function . . . . . . . . . . . . . . . . . . . . . 205
7.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8 Semiparametric Regression 227
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.2 Semiparametric Linear Regression Models . . . . . . . . 228
8.2.1 The Model . . . . . . . . . . . . . . . . . . . . . 228
8.2.2 Estimation and Inference . . . . . . . . . . . . . 229
8.2.3 Vector Spline . . . . . . . . . . . . . . . . . . . . 233
8.3 Semiparametric Nonlinear Regression Models . . . . . . 240
8.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 247
9 Semiparametric Mixed-Effects Models 273
9.1 Linear Mixed-Effects Models . . . . . . . . . . . . . . . 273
9.2 Semiparametric Linear Mixed-Effects Models . . . . . . 274
9.3 Semiparametric Nonlinear Mixed-Effects Models . . . . 283
9.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 288
References 347
Author Index 355
Subject Index 359


本帖隐藏的内容

Wang_Y.-Smoothing_Splines__Methods_and_Applications new version.rar
大小:(3.79 MB)

只需: 5 个论坛币  马上下载

本附件包括:

  • Wang_Y.-Smoothing_Splines__Methods_and_Applications.pdf





二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-11-24 11:28:47
审批中
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-11-24 11:31:54
Statistical analysis often involves building mathematical models that
examine the relationship between dependent and independent variables.
This book is about a general class of powerful and flexible modeling
techniques, namely, spline smoothing.
Research on smoothing spline models has attracted a great deal of
attention in recent years, and the methodology has been widely used in
many areas.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-11-24 11:46:48
This book provides an introduction to some basic smoothing
spline models, including polynomial, periodic, spherical, thin-plate, L-,
and partial splines, as well as an overview of more advanced models, including
smoothing spline ANOVA, extended and generalized smoothing
spline ANOVA, vector spline, nonparametric nonlinear regression, semiparametric
regression, and semiparametric mixed-effects models. Methods
for model selection and inference are also presented.
The general forms of nonparametric/semiparametric linear/nonlinear
fixed/mixed smoothing spline models in this book provide unified frameworks
for estimation, inference, and software implementation. This book
draws on the theory of reproducing kernel Hilbert space (RKHS) to
present various smoothing spline models in a unified fashion. On the
other hand, the subject of smoothing spline in the context of RKHS
and regularization is often regarded as technical and difficult. One of
my main goals is to make the advanced smoothing spline methodology
based on RKHS more accessible to practitioners and students. With this
in mind, the book focuses on methodology, computation, implementation,
software, and application. It provides a gentle introduction to the
RKHS, keeps theory at the minimum level, and provides details on how
the RKHS can be used to construct spline models.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-11-24 11:52:50
dsfaewfwe
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-11-24 11:56:05
申请加精
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群