tracy272523 发表于 2013-3-5 15:31 
谢谢epoh老师的热心解答,V5~~~这段时间我用R和WINRATS做出来的结果存在差异,希望老师百忙之中抽空帮忙解 ...
第二:NO CONVERGENCE IN 35 ITERATIONS
garch(p=1,q=1,distrib=t,mv=dcc,hmatrices=hh,
PMETHOD=SIMPLEX,PITERS=10) / reu rrj
MV-GARCH, DCC - Estimation by BFGS
Convergence in 43 Iterations. Final criterion was 0.0000096 <= 0.0000100
Usable Observations 1466
Log Likelihood -5231.4881
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Mean(1) 0.0804983111 0.0354312919 2.27196 0.02308921
2. Mean(2) 0.0926582098 0.0358605052 2.58385 0.00977039
3. C(1) 0.1076401183 0.0227460367 4.73226 0.00000222
4. C(2) 0.1109480103 0.0223385499 4.96666 0.00000068
5. A(1) 0.1177954012 0.0170450972 6.91081 0.00000000
6. A(2) 0.1007084920 0.0137585167 7.31972 0.00000000
7. B(1) 0.8569541976 0.0184379639 46.47770 0.00000000
8. B(2) 0.8651192375 0.0163295911 52.97862 0.00000000
9. DCC(1) 0.0284582737 0.0074859859 3.80154 0.00014380
10. DCC(2) 0.9500893332 0.0123196238 77.12000 0.00000000
第三:
library(rmgarch)
data<-read.csv("reuasian.csv")
# univariate normal GARCH(1,1) for each series
garch11.spec = ugarchspec(mean.model = list(armaOrder = c(1,1)), variance.model = list(garchOrder = c(1,1), model = "sGARCH"), distribution.model = "norm")
# dcc specification - GARCH(1,1) for conditional correlations
dcc.garch11.spec = dccspec(uspec = multispec( replicate(2,garch11.spec) ), dccOrder = c(1,1), distribution = "mvnorm")
fit = dccfit(dcc.garch11.spec, data = data)
fit
*---------------------------------*
* DCC GARCH Fit *
*---------------------------------*
Distribution : mvnorm
DCC Order : 1 1
Asymmetric : FALSE
No. of Parameters : 15
[VAR GARCH DCC UncQ] : [0+12+2+1]
No. of Series : 2
No. of Observations : 1466
Log-Likelihood : -5226.767
Av.Log-Likelihood : -3.57
Optimal Parameters
---------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
[
REU].mu 0.072672 0.037003 1.96393 0.049538
[REU].ar1 0.558679 0.175215 3.18854 0.001430
[REU].ma1 -0.621721 0.169460 -3.66883 0.000244
[REU].omega 0.106359 0.043141 2.46538 0.013687
[REU].alpha1 0.119908 0.026825 4.47007 0.000008
[REU].beta1 0.855174 0.021793 39.24099 0.000000
[
RRJ].mu 0.022321 0.039643 0.56306 0.573397
[RRJ].ar1 -0.455193 0.355177 -1.28159 0.199985
[RRJ].ma1 0.432654 0.344368 1.25637 0.208982
[RRJ].omega 0.097119 0.041157 2.35973 0.018288
[RRJ].alpha1 0.100658 0.029384 3.42562 0.000613
[RRJ].beta1 0.870860 0.028901 30.13236 0.000000
[Joint]dcca1 0.021719 0.006528 3.32700 0.000878
[Joint]dccb1 0.953952 0.012783 74.62820 0.000000