tracy272523 发表于 2013-1-29 13:32 
恩,只要能做出AG DCC就可以,那我就用这个软件,epoh老师能分享下AG DCC的程序吗
数据读取方式如下:
请注意短信息.
OPEN DATA dcc_3var.xls
DATA(FORMAT=XLS,ORG=COLUMNS) 1 1000 v1 v2 v3
dcc_3var.xls
GARCH Model - Estimation by BFGS
Convergence in 20 Iterations. Final criterion was 0.0000042 <= 0.0000100
Dependent Variable Y(1)
Usable Observations 1000
Log Likelihood 17.0788
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. C 0.003596771 0.001133462 3.17326 0.00150736
2. A 0.186945028 0.041178092 4.53991 0.00000563
3. B 0.770989959 0.033656820 22.90739 0.00000000
4. D -0.009132399 0.048132807 -0.18973 0.84951809
GARCH Model - Estimation by BFGS
Convergence in 22 Iterations. Final criterion was 0.0000053 <= 0.0000100
Dependent Variable Y(2)
Usable Observations 1000
Log Likelihood 112.4791
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. C 0.005470113 0.001320792 4.14154 0.00003450
2. A 0.338616481 0.058372461 5.80096 0.00000001
3. B 0.594927063 0.050396679 11.80489 0.00000000
4. D -0.012382068 0.075276380 -0.16449 0.86934692
GARCH Model - Estimation by BFGS
Convergence in 18 Iterations. Final criterion was 0.0000000 <= 0.0000100
Dependent Variable Y(3)
Usable Observations 1000
Log Likelihood 552.5626
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. C 0.001875018 0.000578170 3.24302 0.00118268
2. A 0.160220953 0.041884308 3.82532 0.00013060
3. B 0.772309282 0.047008630 16.42910 0.00000000
4. D -0.039267560 0.046065978 -0.85242 0.39398104
Covariance\Correlation Matrix
EPS(1) EPS(2) EPS(3)
EPS(1) 0.997434697 0.45763 0.42535
EPS(2) 0.456803367 0.998968232 0.20744
EPS(3) 0.424635657 0.207245274 0.999187449
Covariance\Correlation Matrix
ETA(1) ETA(2) ETA(3)
ETA(1) 0.506877444 0.60551 0.56421
ETA(2) 0.302033974 0.490877367 0.44693
ETA(3) 0.290402183 0.226377049 0.522663004
AGDDCC - Estimation by BFGS
Convergence in 38 Iterations. Final criterion was 0.0000033 <= 0.0000100
Usable Observations 999
Function Value 906.9126
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. AQ(1) 0.260195346 0.102253497 2.54461 0.01093996
2. AQ(2) 0.107645492 0.082653251 1.30237 0.19278837
3. AQ(3) 0.095833544 0.071659140 1.33735 0.18110754
4. BQ(1) 0.808746043 0.094206344 8.58484 0.00000000
5. BQ(2) 0.645422712 0.185225611 3.48452 0.00049302
6. BQ(3) -0.977690531 0.042951387 -22.76272 0.00000000
7. GQ(1) -0.405776175 0.111996901 -3.62310 0.00029109
8. GQ(2) -0.174930156 0.108047817 -1.61901 0.10544579
9. GQ(3) 0.026304831 0.090370574 0.29108 0.77099213