黃河泉 发表于 2017-9-6 07:45 
或许你应该看看这个 http://research.uni-leipzig.de/rego/。
非常感谢!!!亲测好用!!!以下是我试验的结果:
xi: rego csrd2 i.ind \ i.ownership \ i.year \ roe rks lnta11 (detail) \ chsr absr (detail) \ lngovshare2 (detail), vce(robust)
i.ind _Iind_1-6 (naturally coded; _Iind_1 omitted)
i.ownership _Iownership_1-4 (naturally coded; _Iownership_1 omitted)
i.year _Iyear_2009-2015 (naturally coded; _Iyear_2009 omitted)
------------------------------------------------------------------------------
Gr Regressor | Coef. Std.Err. P>|t| Ind. %R2 Group %R2
--------------------+---------------------------------------------------------
1 _Iind_2 | -.0125612 * .0072006 0.081 4.9516
_Iind_3 | .0150228 ** .0066898 0.025
_Iind_4 | .0089341 * .0050616 0.078
_Iind_5 | -.0219013 .0151854 0.149
_Iind_6 | .0146675 .0089276 0.101
2 _Iownership_2 | .0009157 .0057765 0.874 2.1694
_Iownership_3 | -.0346758 ** .0137256 0.012
_Iownership_4 | -.0341729 ** .0133951 0.011
3 _Iyear_2010 | .0062102 .0105388 0.556 6.4771
_Iyear_2011 | .0041776 .0105349 0.692
_Iyear_2012 | -.0151482 .0112136 0.177
_Iyear_2013 | -.0210006 * .0110821 0.058
_Iyear_2014 | -.0327348 *** .0108743 0.003
_Iyear_2015 | -.0433247 *** .011189 0.000
4 roe | .0005596 * .0002942 0.057 1.5315 84.0700
rks | .0046397 *** .0002704 0.000 74.2415
lnta11 | .0077912 *** .0023523 0.001 8.2970
5 chsr | -.0052554 .0169396 0.756 0.4543 1.3636
absr | .0584327 ** .0227124 0.010 0.9093
6 lngovshare2 | -.019254 *** .0070033 0.006 0.9683 0.9683
- Intercept | .2147341 .0537193 0.000
--------------------+---------------------------------------------------------
Observations | 1892
Overall R2 | 0.21490
Root MSE | .0881142
F-stat. Model | 22.6255 *** 0.000
Log Likelihood | 1921.825
------------------------------------------------------------------------------