全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
23159 5
2013-04-06

回归模型的本意是给定x值,然后预测(或估计)y的条件均值。在给定的x值下,y值可能忽高忽低(即y是随机变量),其变化程度也可大可小(即y有方差),但其条件均值是可以通过回归方法来估计的。至于y的条件方差,在只有一个固定的x值下是无法估计的(在重复测量样本下也许可以做到,因为这时有多个固定相同的x值),所以只好简单地假设对于任何给定的xy的条件方差都是一样的(即同方差假设),此时才可以通过多个样本点来估计一个相同的方差,然后进行各种t检验、f检验。

通俗一点说,回归的思想就是先抓住x,然后观察y将如何变化。比如说居民收入r与消费c,先抓住1000元收入水平的消费群体,然后看他们将如何消费,c|1000是条件随机变量(当然,实际数据中1000元水平的观测可能只有一个);然后再抓住1500元收入水平的群体,再看他们将如何消费,依次类推。。。一般来说,随着收入增长,消费的条件均值将同步增长,此时回归关系成立。

但是,令我们苦恼的是,实际中很有可能是“无法抓住x”的,因为x在变,y也在变,然后y的变化又影响到了x,所以我们观测到的结果,很有可能是xy相互影响的结果;通俗一点说,就是x已经与y纠缠到了一起,你哪里还能辨清哪是x,哪是y?比如说收入与消费,可以说赚得多,花得也多,但钱花完了,又得想办法去多赚点,这时收入与消费是相互影响的,你是无法"按住x"的。因为等你"按住x"了,去观察yy的变动回过头来又造成了x的变化,你转身一看,坏了,x已经不是原来那个x了,它已经变了!这个相互影响的过程,你是观测不到的,你观测到的只是结果。所以在你观测到实际数据的时候,x已经不是本来的xx中混杂了y的信息。既然x已经不是本来意义上的x,你又如何去估计它对Y的真实影响?这就是我们通常所说的联立性偏误(simultaneity bias),即xy是同时变动的。这种情况下,x与回归模型的误差项表现为相关,违背了经典ols的假设。此时,你应该可以知道,你很难估计xy的真实影响,即在经典回归假设下,估计出的回归系数是有偏的。这是造成内生性的情况之一。

还有可能是x在变,其他影响y的因素也在变(因为除了x影响y外,也有其他因素在影响y),但这些因素你没有纳入模型的解释变量中,此时x与回归模型的误差项也表现为相关(因为遗漏因素的影响归入了误差项)。此时,你如何能辨清y的变化,有多少是x造成的,又有多少是“其他因素”造成的?于是估计再次陷入僵局。这种情况的产生,需要两个条件:一是x变化,其他因素也同时变化(x与其他因素相关),二是其他因素要能影响y(即其他因素要与y相关),这是造成内生性的情况之二。

最后,总结如下(为助于理解,可能不太严谨):

1、  当x外生,此时x是固定变量,非随机变量,xe不相关的假设自动成立。(对于实验数据),由于能够先“按住x”,再来观察yy无法影响x,其他与y相关的变量也无法影响x,所以能够避免内生性问题。

2、  当x内生,此时x一般是随机变量,随机性就可能造成内生性问题。因为此时x无法“被按住”,你观测到的x值与y值,可能是他们相互作用的结果;也可能是有一个潜在因子(真正的罪魁祸首),它造成了xy的同时变动(比如说一个学生的理科成绩与文科成绩,都由该学生的聪明程度和努力程度来决定,但一个变量肯定不是另一个变量的原因),所以你无法按照你理想的逻辑,先按住x,再来观测y,此时xe是相关的。但是,在我们的经典ols中,都是很不负责任地人为假设xe是不相关的。否则,ols就无法应用了!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-4-8 18:43:29
急求这方面的知识
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-8-17 22:04:26
兄台讲得好啊!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-11-12 22:07:38
学习了~最近狂补计量经济学知识啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-4-17 20:01:23
学习了,多谢分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-12 19:13:20
讲的明白,赞一个
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群