模型大约如下
. regress x27 l.x27 day1-day4
Source | SS df MS Number of obs = 1305
-------------+------------------------------ F( 5, 1299) =12597.51
Model | 132.876509 5 26.5753018 Prob > F = 0.0000
Residual | 2.74032868 1299 .002109568 R-squared = 0.9798
-------------+------------------------------ Adj R-squared = 0.9797
Total | 135.616837 1304 .104000642 Root MSE = .04593
------------------------------------------------------------------------------
x27 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x27 |
L1. | .9899664 .0039446 250.97 0.000 .9822279 .9977049
|
day1 | .0011018 .0040206 0.27 0.784 -.0067858 .0089894
day2 | .0064908 .0040206 1.61 0.107 -.0013968 .0143784
day3 | -.0024839 .0040206 -0.62 0.537 -.0103716 .0054037
day4 | .0000125 .0040206 0.00 0.998 -.0078751 .0079001
_cons | .0281859 .0118072 2.39 0.017 .0050225 .0513492
------------------------------------------------------------------------------
. regress x27 l.x27 l2.x27 l3.x27 day1-day4
Source | SS df MS Number of obs = 1303
-------------+------------------------------ F( 7, 1295) = 9104.00
Model | 132.804655 7 18.9720936 Prob > F = 0.0000
Residual | 2.69868739 1295 .002083928 R-squared = 0.9801
-------------+------------------------------ Adj R-squared = 0.9800
Total | 135.503342 1302 .104073228 Root MSE = .04565
------------------------------------------------------------------------------
x27 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x27 |
L1. | .8763499 .0277694 31.56 0.000 .821872 .9308278
L2. | .0701034 .036968 1.90 0.058 -.0024204 .1426272
L3. | .0449416 .0278155 1.62 0.106 -.0096268 .0995101
|
day1 | .0014476 .0040007 0.36 0.718 -.006401 .0092962
day2 | .0069641 .0040009 1.74 0.082 -.0008849 .0148131
day3 | -.0013488 .004006 -0.34 0.736 -.0092079 .0065102
day4 | .0003209 .004013 0.08 0.936 -.0075517 .0081936
_cons | .0235372 .0117977 2.00 0.046 .0003926 .0466818
------------------------------------------------------------------------------
. durbina
Durbin's alternative test for autocorrelation
---------------------------------------------------------------------------
lags(p) | chi2 df Prob > chi2
-------------+-------------------------------------------------------------
1 | 2.865 1 0.0905
---------------------------------------------------------------------------
H0: no serial correlation
. test l.x27=1
( 1) L.x27 = 1
F( 1, 1295) = 19.83
Prob > F = 0.0000
. test l2.x27 l3.x27
( 1) L2.x27 = 0
( 2) L3.x27 = 0
F( 2, 1295) = 9.22
Prob > F = 0.0001
|
请问下,检测相关序列性的话,首先是
test X=1
然后得到F值和P值
再然后test x2 x3 x4 x5
又得到F和P
最后durbina
请问是否第一步的F必须为1,否则则拒绝相关性
第二步的F必须为0?(因为例题中第一步检测的F是99,第二步是34.99,都说是强烈拒绝)
DW的检验,直接看chi和P,如果P<0.01就是强烈证据序列相关,<0.05是证明序列相关,>0.05就是无序列相关
请问这样判定对吗?
或者哪位可告知下,关于这几个检验的判定标准是什么?就是小于多少算是
rejected strongly之类的……