全部版块 我的主页
论坛 经管考试 九区 经管考证 金融类
2013-11-24 18:42:28
先把小球分成A、B、C、D四组,每组三个球。
1.第一次:A与B称,若平,第二次A与C称,平的话,异常的球在D组中,若不平在C组中,(同时也知道了异常球是轻还是重了),第三次选其中任意2科称,就能判断了。
2.第一次:A与B称,若不平,第二次A与C称,平的话,异常的球在B组中,若不平在A组中,(同时也知道了异常球是轻还是重了),第三次选其中任意2科称,就能判断了。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 18:51:32
這個知道答案了,我也不能說啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 19:12:24
大国士 发表于 2013-11-24 17:50
12个球分成两组,每6个一组,对称,可知道两组重量不同{第一次称},(假设那个特别的小球质量比较重)可选质 ...
万一在轻的那边呢?你把重的测了,就得出错误的结论了。你第二部的前提是在知道这个球与其他球轻重的前提下的,呵呵。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 19:14:02
btdimmy 发表于 2013-11-24 18:42
先把小球分成A、B、C、D四组,每组三个球。
1.第一次:A与B称,若平,第二次A与C称,平的话,异常的球在D ...
认可你的答案,呵呵。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 19:15:37
可以的,第一次,一边六个,取最重的六个。第二次一边三个,取最重的三个,第三次任取三个中的两个
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 19:22:37
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 19:49:13
reduce_fat 发表于 2013-11-23 22:49
O(∩_∩)O哈哈~,沙发是我的啦
reduce_fat 于 2013-11-24 03:32 使用 抢沙发 抢夺本帖沙发
这沙发抢的连最佳答案的位置都抢了!!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 19:50:15
btdimmy 发表于 2013-11-24 18:42
先把小球分成A、B、C、D四组,每组三个球。
1.第一次:A与B称,若平,第二次A与C称,平的话,异常的球在D ...
第一次:A与B,平,第二次,A与C,平,假设异常球在D组,你怎么能知道异常球是轻了还是重了?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 19:50:45
楼主看这里!看这里!,你往哪看呢,看这!!!其实是个很简单的题,推荐大家看一本书叫《全世界聪明人都在思考的1000个问题》有很多类似的题目。看了这么多答案,不是太麻烦,就是有漏洞,说个正确答案!绝对没漏洞!
先把小球分成四组,A、B、C、D,每组三个。看完!!!
选择A组和B组称量一次,这时选出现两种情况:

如果不平,则如果C,D称重肯定是平的,则把A、B其中一组拿掉,换上C、D中其中任意一个,第二次称量。
如果是平的,依然把A、B其中一组拿掉,换上C、D中其中任意一个。
无论第一次称量平或不平,通过第二次称量都能称出重量不一样的是哪一组,还能知道这一组比其他轻还是重。(而不是很多人说的那样:分成四组,A和B称重,C和D称重。)
找出是那一组不一样后,取出这一组的三个小球
选择任意两个第三次称重,如果重量一样,那么剩下一个就是不一样的,
如果重量不一样,依据先前得知不一样的小球是轻是重,按称量结果选不同重量的球

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 19:52:36
foveryoung 发表于 2013-11-24 19:12
万一在轻的那边呢?你把重的测了,就得出错误的结论了。你第二部的前提是在知道这个球与其他球轻重的前提 ...
在12个球中有一个小球是与众不同的  在条件没有给出的情况下我假设的是小球比较重,当然了   我也可以假设小球比较轻,这个构不成你所说的,条件就不成立
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 20:19:54
mark先
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 20:23:32
用二进制的思想编个程序就可以
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 20:27:34
玉瑾然 发表于 2013-11-24 19:50
楼主看这里!看这里!,你往哪看呢,看这!!!其实是个很简单的题,推荐大家看一本书叫《全世界聪明人都在 ...
第一次:A与B,平,第二次,A与C,平,假设异常球在D组,你怎么能知道异常球是轻了还是重了?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 20:37:12
MuDull 发表于 2013-11-24 20:19
分成四组,每组三个,首先任选两组称重
A:如果不平衡,留下重的那组,再任选其他两组中的一组,再次和重的 ...
你的B1情况,最后剩下的那三个球随机选两球,如果这两个球是不平衡的,那你选哪个呢,所以如果是这个情况,你是选不出来,而不是“不确定是比较轻还是比较重”。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 21:10:25
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 21:31:11
先把小球分成A、B、C、D四组,每组三个球。
选择A组和B组称量一次,再选C组和D组称量一次,这样就可以选出一组和其他组重量不一样的,这时也知道了那个重量不一样的小球比别的小球是轻是重。
取出选出这一组的三个小球,分别标为E、F、G,
先选择E球和F球称量一下,如果重量一样,那么G球就是所求,
如果重量不一样,依据先前得知不一样的小球是轻是重,按称量结果选择E球或F球。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 21:58:04
见识见识了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 22:03:39
这样也可呀
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 22:09:05
我觉得一楼说的对
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 22:33:30
3次肯定能称出。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 22:35:04
大国士 发表于 2013-11-24 19:52
在12个球中有一个小球是与众不同的  在条件没有给出的情况下我假设的是小球比较重,当然了   我也可以假设 ...
请问你怎么检验你的假设呢?你假设小球比一般的重,然后按你的假设进行检验,得出结论。如果你的假设是错误的呢,小球比一般的轻,天平必然是一边重一边轻,你选择重的那边是不是不合适呢?题目要求的是确定的结果,呵呵,我觉得121楼的挺不错的,当让可能我也走进了某个误区。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 22:36:22
大国士 发表于 2013-11-24 19:52
在12个球中有一个小球是与众不同的  在条件没有给出的情况下我假设的是小球比较重,当然了   我也可以假设 ...
我方才又看了下,121楼也不靠谱,哈哈。。。。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 22:43:21
alecych 发表于 2013-11-24 21:31
先把小球分成A、B、C、D四组,每组三个球。
选择A组和B组称量一次,再选C组和D组称量一次,这样就可以选出 ...
A和B平,C和D不平,如何判断小球在C还是D,毕竟不知道小球是轻还是重啊,后面的就没法继续了,继续就超步了。。。。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 22:59:38
这个题目很老了,高中数学竞赛的时候做过。。。。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 23:29:03
先把小球分成A、B、C、D四组,每组三个球。
选择A组和B组称量一次,再选C组和D组称量一次,这样就可以选出一组和其他组重量不一样的,这时也知道了那个重量不一样的小球比别的小球是轻是重。
取出选出这一组的三个小球,分别标为E、F、G,
先选择E球和F球称量一下,如果重量一样,那么G球就是所求,
如果重量不一样,依据先前得知不一样的小球是轻是重,按称量结果选择E球或F球。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 23:29:38
我去 这太简单了哇 哈哈 分开啊 一边六个,第一次剩六个 第二次剩三个。。。第三次嘛不就知道哪个了?哈哈不过我来晚了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-24 23:42:39
foveryoung 发表于 2013-11-24 22:35
请问你怎么检验你的假设呢?你假设小球比一般的重,然后按你的假设进行检验,得出结论。如果你的假设是错 ...
如果假设的是小球比其他球轻,那两组之间必然是一重一个轻,那个时候的选择必然是轻的那一组了,前提条件是其他11个球质量一样,也就是说只有这一个球得质量是不一样的,很容易就假设出来了  {假设那个球比较重,那就选那个重的那一组,假设球比较轻,那就选比较轻的那一组}
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-25 00:09:21
btdimmy 发表于 2013-11-24 18:42
先把小球分成A、B、C、D四组,每组三个球。
1.第一次:A与B称,若平,第二次A与C称,平的话,异常的球在D ...
1.第一次:A与B称,若平,第二次A与C称,平的话,异常的球在D组中——没错,但接下来怎么办?
你已经称过2次了,却还不知道问题球是重还是轻,怎么用1称搞定结果?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-25 00:18:39
玉瑾然 发表于 2013-11-24 19:50
楼主看这里!看这里!,你往哪看呢,看这!!!其实是个很简单的题,推荐大家看一本书叫《全世界聪明人都在 ...
选择A组和B组称量一次,如果是平的,把A、B其中一组拿掉,换上C、D中其中任意一个。如果还是平的怎么办?你已经称过2次了,却还不知道问题球是重还是轻,怎么用最后1称搞定结果?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-11-25 02:06:56
Yuico 发表于 2013-11-23 22:49
首先我们将小球1~12号编号。
第一次:称1、2、3、4和5、6、7、8
       1)若相等,则异常球在9、10、11、 ...
初次称不相等的情况下,Case 3)是否不等号方向错误?“若g(1,6,7,9)<g(2,3,4,8)则2、3、4中必存在异常球且轻于标准球” 应该是g(1,6,7,9)>g(2,3,4,8)吧?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群