全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
1369 4
2013-12-15



(SpringerBriefs in Statistics )
M. B. Rajarshi  (auth.)-
Statistical Inference for Discrete Time Stochastic Processes
-Springer India (2013)
ISSN 2191-544X ISSN 2191-5458 (electronic)
ISBN 978-81-322-0762-7 ISBN 978-81-322-0763-4 (eBook)
DOI 10.1007/978-81-322-0763-4
Springer New Delhi Heidelberg New York Dordrecht London
Library of Congress Control Number: 2012949564
? The Author(s) 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Contents
1 CAN Estimators from Dependent Observations. . . . . . . . . . . . . . . 1
1.1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Martingales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Mixing Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Empirical Processes of Dependent Observations . . . . . . . . . . . . 9
1.5 CAN Estimation Under Cramér and Other
Regularity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Markov Chains and Their Extensions. . . . . . . . . . . . . . . . . . . . . . 19
2.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Parametric Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Extensions of Markov Chain Models . . . . . . . . . . . . . . . . . . . . 29
2.4 Hidden Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Aggregate Data from Finite Markov Chains . . . . . . . . . . . . . . . 36
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Non-Gaussian ARMA Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1 Integer Valued Non-Negative Auto-Regressive Models . . . . . . . 39
3.2 Auto-Regressive Models for Continuous Random Variables . . . . 41
3.3 Processes Obtained by Minification . . . . . . . . . . . . . . . . . . . . . 44
3.4 Product AR Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 More General Non-Gaussian Sequences . . . . . . . . . . . . . . . . . . 46
3.6 Goodness-of-Fit Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 50
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 Estimating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Conditional Least Square Estimation . . . . . . . . . . . . . . . . . . . . 55
4.2 Optimal Estimating Functions . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Estimating Functions for Stochastic Models . . . . . . . . . . . . . . . 61
ix
4.4 Estimating Functions for a Vector Parameter . . . . . . . . . . . . . . 65
4.5 Confidence Intervals Based on Estimating Functions . . . . . . . . . 69
4.6 Combining Correlated Estimating Functions . . . . . . . . . . . . . . . 71
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5 Estimation of Joint Densities and Conditional Expectation . . . . . . 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Main Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6 Bootstrap and Other Resampling Procedures . . . . . . . . . . . . . . . . 85
6.1 Efron’s Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Markov Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Bootstrap for Stationary and Invertible ARMA Series . . . . . . . . 91
6.5 AR-Sieve Bootstrap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.6 Block-Based Bootstraps for Stationary Sequences . . . . . . . . . . . 95
6.7 Other Block-Based Sample Reuse Methods
for Stationary Observations. . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.8 Resampling Based on Estimating Functions . . . . . . . . . . . . . . . 106
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-12-16 05:38:43
谢谢分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-12-16 12:57:59
thanks a lot
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-2-27 14:07:57
thanks a lot!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-3-25 22:29:14
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群