<p>This is a very useful book in finince field. I need to get some money to download some other material here. So don't get made at me about $10 limit (everybody can afford). Enjoy</p><p>Mathematical Economics and Finance</p><p></p><p></p><p>Michael Harrison Patrick Waldron</p><p></p><p></p><p>December 2, 1998</p><p></p><p></p><p>Contents</p><p></p><p></p><p>List of Tables iii</p><p></p><p></p><p>List of Figures v</p><p></p><p></p><p>PREFACE vii</p><p></p><p></p><p>What Is Economics? . . . . . . . . . . . . . . . . . . . . . . . . . . . vii</p><p></p><p></p><p>What Is Mathematics? . . . . . . . . . . . . . . . . . . . . . . . . . . . viii</p><p></p><p></p><p>NOTATION ix</p><p></p><p></p><p>I MATHEMATICS 1</p><p></p><p></p><p>1 LINEAR ALGEBRA 3</p><p></p><p></p><p>1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3</p><p></p><p></p><p>1.2 Systems of Linear Equations and Matrices . . . . . . . . . . . . . 3</p><p></p><p></p><p>1.3 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 7</p><p></p><p></p><p>1.4 Matrix Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 7</p><p></p><p></p><p>1.5 Vectors and Vector Spaces . . . . . . . . . . . . . . . . . . . . . 11</p><p></p><p></p><p>1.6 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . 12</p><p></p><p></p><p>1.7 Bases and Dimension . . . . . . . . . . . . . . . . . . . . . . . . 12</p><p></p><p></p><p>1.8 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13</p><p></p><p></p><p>1.9 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . 14</p><p></p><p></p><p>1.10 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 15</p><p></p><p></p><p>1.11 Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 15</p><p></p><p></p><p>1.12 Definite Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 15</p><p></p><p></p><p>2 VECTOR CALCULUS 17</p><p></p><p></p><p>2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17</p><p></p><p></p><p>2.2 Basic Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 17</p><p></p><p></p><p>2.3 Vector-valued Functions and Functions of Several Variables . . . 18</p><p></p><p></p><p>Revised: December 2, 1998</p><p></p><p></p><p>ii CONTENTS</p><p></p><p></p><p>2.4 Partial and Total Derivatives . . . . . . . . . . . . . . . . . . . . 20</p><p></p><p></p><p>2.5 The Chain Rule and Product Rule . . . . . . . . . . . . . . . . . 21</p><p></p><p></p><p>2.6 The Implicit Function Theorem . . . . . . . . . . . . . . . . . . . 23</p><p></p><p></p><p>2.7 Directional Derivatives . . . . . . . . . . . . . . . . . . . . . . . 24</p><p></p><p></p><p>2.8 Taylor’s Theorem: Deterministic Version . . . . . . . . . . . . . 25</p><p></p><p></p><p>2.9 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . 26</p><p></p><p></p><p>3 CONVEXITY AND OPTIMISATION 27</p><p></p><p></p><p>3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27</p><p></p><p></p><p>3.2 Convexity and Concavity . . . . . . . . . . . . . . . . . . . . . . 27</p><p></p><p></p><p>3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 27</p><p></p><p></p><p>3.2.2 Properties of concave functions . . . . . . . . . . . . . . 29</p><p></p><p></p><p>3.2.3 Convexity and differentiability . . . . . . . . . . . . . . . 30</p><p></p><p></p><p>3.2.4 Variations on the convexity theme . . . . . . . . . . . . . 34</p><p></p><p></p><p>3.3 Unconstrained Optimisation . . . . . . . . . . . . . . . . . . . . 39</p><p></p><p></p><p>3.4 Equality Constrained Optimisation:</p><p></p><p></p><p>The Lagrange Multiplier Theorems . . . . . . . . . . . . . . . . . 43</p><p></p><p></p><p>3.5 Inequality Constrained Optimisation:</p><p></p><p></p><p>The Kuhn-Tucker Theorems . . . . . . . . . . . . . . . . . . . . 50</p><p></p><p></p><p>3.6 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58</p><p></p><p></p><p>II APPLICATIONS 61</p><p></p><p></p><p>4 CHOICE UNDER CERTAINTY 63</p><p></p><p></p><p>4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63</p><p></p><p></p><p>4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63</p><p></p><p></p><p>4.3 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66</p><p></p><p></p><p>4.4 Optimal Response Functions:</p><p></p><p></p><p>Marshallian and Hicksian Demand . . . . . . . . . . . . . . . . . 69</p><p></p><p></p><p>4.4.1 The consumer’s problem . . . . . . . . . . . . . . . . . . 69</p><p></p><p></p><p>4.4.2 The No Arbitrage Principle . . . . . . . . . . . . . . . . . 70</p><p></p><p></p><p>4.4.3 Other Properties of Marshallian demand . . . . . . . . . . 71</p><p></p><p></p><p>4.4.4 The dual problem . . . . . . . . . . . . . . . . . . . . . . 72</p><p></p><p></p><p>4.4.5 Properties of Hicksian demands . . . . . . . . . . . . . . 73</p><p></p><p></p><p>4.5 Envelope Functions:</p><p></p><p></p><p>Indirect Utility and Expenditure . . . . . . . . . . . . . . . . . . 73</p><p></p><p></p><p>4.6 Further Results in Demand Theory . . . . . . . . . . . . . . . . . 75</p><p></p><p></p><p>4.7 General Equilibrium Theory . . . . . . . . . . . . . . . . . . . . 78</p><p></p><p></p><p>4.7.1 Walras’ law . . . . . . . . . . . . . . . . . . . . . . . . . 78</p><p></p><p></p><p>4.7.2 Brouwer’s fixed point theorem . . . . . . . . . . . . . . . 78</p><p></p><p></p><p>Revised: December 2, 1998</p><p></p><p></p><p>CONTENTS iii</p><p></p><p></p><p>4.7.3 Existence of equilibrium . . . . . . . . . . . . . . . . . . 78</p><p></p><p></p><p>4.8 The Welfare Theorems . . . . . . . . . . . . . . . . . . . . . . . 78</p><p></p><p></p><p>4.8.1 The Edgeworth box . . . . . . . . . . . . . . . . . . . . . 78</p><p></p><p></p><p>4.8.2 Pareto efficiency . . . . . . . . . . . . . . . . . . . . . . 78</p><p></p><p></p><p>4.8.3 The First Welfare Theorem . . . . . . . . . . . . . . . . . 79</p><p></p><p></p><p>4.8.4 The Separating Hyperplane Theorem . . . . . . . . . . . 80</p><p></p><p></p><p>4.8.5 The Second Welfare Theorem . . . . . . . . . . . . . . . 80</p><p></p><p></p><p>4.8.6 Complete markets . . . . . . . . . . . . . . . . . . . . . 82</p><p></p><p></p><p>4.8.7 Other characterizations of Pareto efficient allocations . . . 82</p><p></p><p></p><p>4.9 Multi-period General Equilibrium . . . . . . . . . . . . . . . . . 84</p><p></p><p></p><p>5 CHOICE UNDER UNCERTAINTY 85</p><p></p><p></p><p>5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85</p><p></p><p></p><p>5.2 Review of Basic Probability . . . . . . . . . . . . . . . . . . . . 85</p><p></p><p></p><p>5.3 Taylor’s Theorem: Stochastic Version . . . . . . . . . . . . . . . 88</p><p></p><p></p><p>5.4 Pricing State-Contingent Claims . . . . . . . . . . . . . . . . . . 88</p><p></p><p></p><p>5.4.1 Completion of markets using options . . . . . . . . . . . 90</p><p></p><p></p><p>5.4.2 Restrictions on security values implied by allocational ef-</p><p></p><p></p><p>ficiency and covariance with aggregate consumption . . . 91</p><p></p><p></p><p>5.4.3 Completing markets with options on aggregate consumption 92</p><p></p><p></p><p>5.4.4 Replicating elementary claims with a butterfly spread . . . 93</p><p></p><p></p><p>5.5 The Expected Utility Paradigm . . . . . . . . . . . . . . . . . . . 93</p><p></p><p></p><p>5.5.1 Further axioms . . . . . . . . . . . . . . . . . . . . . . . 93</p><p></p><p></p><p>5.5.2 Existence of expected utility functions . . . . . . . . . . . 95</p><p></p><p></p><p>5.6 Jensen’s Inequality and Siegel’s Paradox . . . . . . . . . . . . . . 97</p><p></p><p></p><p>5.7 Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99</p><p></p><p></p><p>5.8 The Mean-Variance Paradigm . . . . . . . . . . . . . . . . . . . 102</p><p></p><p></p><p>5.9 The Kelly Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 103</p><p></p><p></p><p>5.10 Alternative Non-Expected Utility Approaches . . . . . . . . . . . 104</p><p></p><p></p><p>6 PORTFOLIO THEORY 105</p><p></p><p></p><p>6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105</p><p></p><p></p><p>6.2 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . 105</p><p></p><p></p><p>6.2.1 Measuring rates of return . . . . . . . . . . . . . . . . . . 105</p><p></p><p></p><p>6.2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 108</p><p></p><p></p><p>6.3 The Single-period Portfolio Choice Problem . . . . . . . . . . . . 110</p><p></p><p></p><p>6.3.1 The canonical portfolio problem . . . . . . . . . . . . . . 110</p><p></p><p></p><p>6.3.2 Risk aversion and portfolio composition . . . . . . . . . . 112</p><p></p><p></p><p>6.3.3 Mutual fund separation . . . . . . . . . . . . . . . . . . . 114</p><p></p><p></p><p>6.4 Mathematics of the Portfolio Frontier . . . . . . . . . . . . . . . 116</p><p></p><p></p><p>Revised: December 2, 1998</p><p></p><p></p><p>iv CONTENTS</p><p></p><p></p><p>6.4.1 The portfolio frontier in <N:</p><p></p><p></p><p>risky assets only . . . . . . . . . . . . . . . . . . . . . . 116</p><p></p><p></p><p>6.4.2 The portfolio frontier in mean-variance space:</p><p></p><p></p><p>risky assets only . . . . . . . . . . . . . . . . . . . . . . 124</p><p></p><p></p><p>6.4.3 The portfolio frontier in <N:</p><p></p><p></p><p>riskfree and risky assets . . . . . . . . . . . . . . . . . . 129</p><p></p><p></p><p>6.4.4 The portfolio frontier in mean-variance space:</p><p></p><p></p><p>riskfree and risky assets . . . . . . . . . . . . . . . . . . 129</p><p></p><p></p><p>6.5 Market Equilibrium and the CAPM . . . . . . . . . . . . . . . . 130</p><p></p><p></p><p>6.5.1 Pricing assets and predicting security returns . . . . . . . 130</p><p></p><p></p><p>6.5.2 Properties of the market portfolio . . . . . . . . . . . . . 131</p><p></p><p></p><p>6.5.3 The zero-beta CAPM . . . . . . . . . . . . . . . . . . . . 131</p><p></p><p></p><p>6.5.4 The traditional CAPM . . . . . . . . . . . . . . . . . . . 132</p><p></p><p></p><p>7 INVESTMENT ANALYSIS 137</p><p></p><p></p><p>7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137</p><p></p><p></p><p>7.2 Arbitrage and Pricing Derivative Securities . . . . . . . . . . . . 137</p><p></p><p></p><p>7.2.1 The binomial option pricing model . . . . . . . . . . . . 137</p><p></p><p></p><p>7.2.2 The Black-Scholes option pricing model . . . . . . . . . . 137</p><p></p><p></p><p>7.3 Multi-period Investment Problems . . . . . . . . . . . . . . . . . 140</p><p></p><p></p><p>7.4 Continuous Time Investment Problems . . . . . . . . . . . . . . . 140</p><p></p><p></p><p>Revised: December 2, 1998</p><p></p><p></p><p></p><p> </p><p><br/>
<br/></p><p><br/>

</p>
[此贴子已经被angelboy于2008-7-23 13:56:23编辑过]