全部版块 我的主页
论坛 经济学论坛 三区 宏观经济学
1751 2
2014-01-17
Time Series Analysis by State Space Methods.pdf
大小:(25.31 MB)

只需: 3 个论坛币  马上下载



1 Introduction 1
1.1 Basic ideas of state space analysis 1
1.2 Linear Gaussian model I
1.3 Non-Gaussian and nonlinear models 3
1.4 Prior knowledge 4
1.5 Notation 4
1.6 Other books on state space methods 5
1.7 Website for the book 5
I THE LINEAR GAUSSIAN STATE SPACE MODEL
2 Local level model 9
2.1 Introduction 9
2.2 Filtering 11
2.2.1 The Kalman Filter 11
2.2.2 Illustration 12
2.3 Forecast errors 13
2.3.1 Cholesky decomposition 14
2.3.2 Error recursions 15
2.4 State smoothing 16
2.4.1 Smoothed state 16
2.4.2 Smoothed state variance 17
2.4.3 Illustration 18
2.5 Disturbance smoothing 19
2.5.1 Smoothed observation disturbances 20
2.5.2 Smoothed state disturbances 20
2.5.3 Illustration 21
2.5.4 Cholesky decomposition and smoothing 22
2.6 Simulation 22
2.6.1 Illustration 23
2.7 Missing observations 23
2.7.1 Illustration 25
2.8 Forecasting 25
2.8.1 Illustration 27
2.9 Initialisation 27
2.10 Parameter estimation 30
2.10.1 Loglikelihood evaluation 30
2.10.2 Concentration of loglikelihood 31
2.10.3 Illustration 32
2.11 Steady state 32
2.12 Diagnostic checking 33
2.12.1 Diagnostic tests for forecast errors 33
2.12.2 Detection of outliers and structural breaks 35
2.12.3 Illustration 35
2.13 Appendix: Lemma in multivariate normal regression 37
3 Linear Gaussian state space models 38
3.1 Introduction 38
3.2 Structural time series models 39
3.2.1 Univariate models 39
3.2.2 Multivariate models 44
3.2.3 STAMP 45
3.3 ARMA models and ARIMA models 46
3.4 Exponential smoothing 49
3.5 State space versus Box-Jenkins approaches 51
3.6 Regression with time-varying coefficients 54
3.7 Regression with ARMA errors 54
3.8 Benchmarking 54
3.9 Simultaneous modelling of series from different sources 56
3.10 State space models in continuous time 57
3.10.1 Local level model 57
3.10.2 Local linear trend model 59
3.11 Spline smoothing 61
3.11.1 Spline smoothing in discrete time 61
3.11.2 Spline smoothing in continuous time 62
4 Filtering, smoothing and forecasting 64
4.1 Introduction 64
4.2 Filtering 65
4.2.1 Derivation of Kalman filter 65
4.2.2 Kalman filter recursion 67
4.2.3 Steady state 68
4.2.4 State estimation errors and forecast errors 68
4.3 State smoothing 70
4.3.1 Smoothed state vector 70
4.3.2 Smoothed state variance matrix 72
4.3.3 State smoothing recursion 73
4.4 Disturbance smoothing 73
4.4.1 Smoothed disturbances 73
4.4.2 Fast state smoothing 75
4.4.3 Smoothed disturbance variance matrices 75
4.4.4 Disturbance smoothing recursion 76
4.5 Covariance matrices of smoothed estimators 77
4.6 Weight functions 81
4.6.1 Introduction 81
4.6.2 Filtering weights 81
4.6.3 Smoothing weights 82
4.7 Simulation smoothing 83
4.7.1 Simulating observation disturbances 84
4.7.2 Derivation of simulation smoother for observation
disturbances 87
4.7.3 Simulation smoothing recursion 89
4.7.4 Simulating state disturbances 90
4.7.5 Simulating state vectors 91
4.7.6 Simulating multiple samples 92
4.8 Missing observations 92
4.9 Forecasting 93
4.10 Dimensionality of observational vector 94
4.11 General matrix form for filtering and smoothing 95
5 Initialisation of filter and smoother 99
5.1 Introduction 99
5.2 The exact initial Kalman filter 101
5.2.1 The basic recursions 101
5.2.2 Transition to the usual Kalman filter 104
5.2.3 A convenient representation 105
5.3 Exact initial state smoothing 106
5.3.1 Smoothed mean of state vector 106
5.3.2 Smoothed variance of state vector 107
5.4 Exact initial disturbance smoothing 109
5.5 Exact initial simulation smoothing 110
5.6 Examples of initial conditions for some models 110
5.6.1 Structural time series models 110
5.6.2 Stationary ARMA models 111
5.6.3 Nonstationary ARIMA models 112
5.6.4 Regression model with ARMA errors 114
5.6.5 Spline smoothing 115
5.7 Augmented Kalman filter and smoother 115
5.7.1 Introduction 115
5.7.2 Augmented Kalman filter 115
5.7.3 Filtering based on the augmented Kalman filter 116
5.7.4 Illustration: the locallinear trend model 118
5.7.5 Comparisons of computational efficiency 119
5.7.6 Smoothing based on the augmented Kalman filter 120
6 Further computational aspects 121
6.1 Introduction 121
6.2 Regression estimation 121
6.2.1 Introduction 121
6.2.2 Inclusion of coefficient vector in state vector 122
6.2.3 Regression estimation by augmentation 122
6.2.4 Least squares and recursive residuals 123
6.3 Square root filter and smoother 124
6.3.1 Introduction 124
6.3.2 Square root form of variance updating 125
6.3.3 Givens rotations 126
6.3.4 Square root smoothing 127
6.3.5 Square root filtering and initialisation 127
6.3.6 {lustration: local linear trend model 128
6.4 Univariate treatment of multivariate series 128
6.4.1 Introduction 128
6.4.2 Details of univariate treatment 129
6.4.3 Correlation between observation equations 131
6.4.4 Computational efficiency 132
6.4.5 Illustration: vector splines 133
6.5 Filtering and smoothing under linear restrictions 134
6.6 The algorithms of SsfPack 134
6.6.1 Introduction 134
6.6.2 The SsfPack function 135
6.6.3 Illustration: spline smoothing 136
7 Maximum likelihood estimation 138
7.1 Introduction 138
7.2 Likelihood evaluation 138
7.2.1 Loglikelihood when initial conditions are known 138
7.2.2 Diffuse loglikelihood 139
7.2.3 Diffuse loglikelihood evaluated via augmented Kalman
filter 140
7.2.4 Likelihood when elements of initial state vector are
fixed but unknown 141
7.3 Parameter estimation 142
7.3.1 Introduction 142
7.3.2 Numerical maximisation algorithms 142
7.3.3 The score vector 144
7.3.4 The EM algorithm 147
7.3.5 Parameter estimation when dealing with diffuse
initial conditions 149
7.3.6 Large sample distribution of maximum likelihood
estimates 150
7.3.7 Effect of errors in parameter estimation 150
7.4 Goodness of fit 152
7.5 Diagnostic checking 152
8 Bayesian analysis 155
8.1 Introduction 155
8.2 Posterior analysis of state vector 155
8.2.1 Posterior analysis conditional on parameter vector 155
8.2.2 Posterior analysis when parameter vector is
unknown 155
8.2.3 Non-informative priors 158
8.3 Markov chain Monte Carlo methods 159
9 Illustrations of the use of the linear Gaussian model 161
9.1 Introduction 161
9.2 Structural time series models 161
9.3 Bivariate structural time series analysis 167
9.4 Box-Jenkins analysis 169
9.5 Spline smoothing 172
9.6 Approximate methods for modelling volatility 175
ff NON-GAUSSIAN AND NONLINEAR STATE SPACE MODELS
10 Non-Gaussian and nonlinear state space models 179
10.1 Introduction 179
10.2 The general non-Gaussian model 179
10.3 Exponential family models 180
10.3.1 Poisson density 181
10.3.2 Binary density 181
10.3.3 Binomial density 181
10.3.4 Negative binomial density 182
10.3.5 Multinomial density 182
10.4 Heavy-tailed distributions 183
10.4.1 i-Distribution 183
10.4.2 Mixture of normals 184
10.4.3 General error distribution 184
10.5 Nonlinear models 184
10.6 Financial models 185
10.6.1 Stochastic volatility models 185
10.6.2 General autoregressive conditional
heteroscedasticity 187
10.6.3 Durations: exponential distribution 188
10.6.4 Trade frequencies: Poisson distribution 188
11 Importance sampling 189
11.1 Introduction 189
11.2 Basic ideas of importance sampling 190
11.3 Linear Gaussian approximating models 191
11.4 Linearisation based on first two derivatives 193
11.4.1 Exponentional family models 195
11.4.2 Stochastic volatility model 195
11.5 Linearisation based on the first derivative 195
11.5.1 i-distribution 197
11.5.2 Mixture of normals 197
11.5.3 General error distribution 197
11.6 Linearisation for non-Gaussian state components 198
11.6.1 /-distribution for state errors 199
11.7 Linearisation for nonlinear models 199
11.7.1 Multiplicative models 201
11.8 Estimating the conditional mode 202
11.9 Computational aspects of importance sampling 204
11.9.1 Introduction 204
11.9.2 Practical implementation of importance sampling 204
11.9.3 Antithetic variables 205
11.9.4 Diffuse initialisation 206
11.9.5 Treatment of /-distribution without importance
sampling 208
11.9.6 Treatment of Gaussian mixture distributions without
importance sampling 210
12 Analysis from a classical standpoint 212
12.1 Introduction 212
12.2 Estimating conditional means and variances 212
12.3 Estimating conditional densities and distribution
functions 213
12.4 Forecasting and estimating with missing observations 214
12.5 Parameter estimation 215
12.5.1 Introduction 215
12.5.2 Estimation of likelihood 215
12.5.3 Maximisation of loglikelihood 216
12.5.4 Variance matrix of maximum likelihood estimate 217
12.5.5 Effect of errors in parameter estimation 217
12.5.6 Mean square error matrix due to simulation 217
12.5.7 Estimation when the state disturbances are Gaussian 219
12.5.8 Control variables 219
13 Analysis from a Bayesian standpoint 222
13.1 Introduction 222
13.2 Posterior analysis of functions of the state vector 222
13.3 Computational aspects of Bayesian analysis 225
13.4 Posterior analysis of parameter vector 226
13.5 Markov chain Monte Carlo methods 228
14 Non-Gaussian and nonlinear illustrations 230
14.1 Introduction 230
14.2 Poisson density: van drivers killed in Great Britain 230
14.3 Heavy-tailed density: outlier in gas consumption in UK 233
14.4 Volatility: pound/dollar daily exchange rates 236
14.5 Binary density: Oxford-Cambridge boat race 237
14.6 Non-Gaussian and nonlinear analysis using SsfPack 238
References 241
Author index 249
Subject index 251


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-1-19 09:20:04
thanks a lot
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-1-3 09:12:44
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群