全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 R语言论坛
2585 3
2008-02-04
1. Using R simulate n = 500 Cauchy random values and plot the values versus the cumulative mean.

2. Write an R program to simulate the expected number, E[N], of tests performed in group testing when:

  • 1)  n = 100000, m = 10000, k = n/m, pi = 0.05, eta = 0.97, theta = 0.95 and
  • 2)  n = 100000, m =   5000, k = n/m, pi = 0.05, eta = 0.97, theta = 0.95

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2008-2-6 05:33:00

第一题可不可以这么做啊?

A = rcauchy(500)

B = cumsum(A)/(c(1:500))

plot(A~B)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-2-6 10:53:00

恩,不错。不过我觉得用plot(B,A)可能符合题意

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-2-12 16:55:00

发第二题答案:

1)  n = 100000, m = 10000, k = n/m, pi = 0.05, eta = 0.97, theta = 0.95

> n = 100000

> m = 10000

> k = n/m

> Pi = 0.05

> Eta = 0.97

> Theta = 0.95

> p = 1 - ( Eta*Pi + (1-Theta)*(1-Pi) )

> N = 0

>

> for (i in 1:m){

+ if(rbinom(1,1,p^k) == 1){

+ N = N + 1

+ }

+ else{

+ N = N + k + 1

+ }

+ }

>

> ev.N = n*(1 + (1/k) - (p^k))

> ev.N

 

 

 

2)  n = 100000, m =   5000, k = n/m, pi = 0.05, eta = 0.97, theta = 0.95

 

> n = 100000

> m = 5000

> k = n/m

> Pi = 0.05

> Eta = 0.97

> Theta = 0.95

> p = 1 - ( Eta*Pi + (1-Theta)*(1-Pi) )

> N = 0

>

> for (i in 1:m){

+ if(rbinom(1,1,p^k) == 1){

+ N = N + 1

+ }

+ else{

+ N = N + k + 1

+ }

+ }

>

> ev.N = n*(1 + (1/k) - (p^k))

> ev.N

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群