我用比例优势模型做模拟,设置参数Z=rnorm(100),beta=1的值,假如设设G(t)=log(t).我应用
out=prop.odds(Surv(x,a1==0)~z,data=f,profile=1,n.sim=500)拟合,结果显示beta的估计=-0.5(原本设的为0.1),这不科学啊!不知道怎么回事,好着急!论文搞不粗来了!
比例优势模型(以下为公式)
library(survival)
data(sTRACE)
# Fits Proportional odds model
out<-prop.odds(Surv(time,status==9)~age+diabetes+chf+vf+sex,
sTRACE,max.time=7,n.sim=100)
summary(out)
运行上面R程序得到的结果是:
红色结果为参数beta的估计,那G(t)的估计呢?在哪里啊?
另外如果我模拟的话,我可以设定Z=rnorm(100),beta=1的值,假如设设G(t)=log(t).我应用
out=prop.odds(Surv(x,a1==0)~z,data=f,profile=1,n.sim=500)拟合,结果显示beta的估计=-0.5(原本设的为0.1),这不科学啊!
哪位大神能帮我解决一下吗?
x a1 z [1,] 1.810059 1 1.09259603 [2,] 2.007997 -1 0.47955195 [3,] 6.008313 3 1.13684571 [4,] 1.136115 4 0.93162188 [5,] 2.938375 5 0.42419451 [6,] 2.118443 6 -2.03331829 [7,] 5.458736 7 1.40399180 [8,] 133.862857 0 0.53042776 [9,] 1.201311 9 0.65308888 [10,] 57.841493 10 0.83124419 [11,] 1.412959 11 0.18500374 [12,] 29.159761 -1 0.26182130 [13,] 18.188196 13 0.11006149 [14,] 1.530348 -1 2.27764079 [15,] 1.029573 15 1.71659100 [16,] 4.947406 -1 -0.68200276 [17,] 1.075174 17 0.27969654 [18,] 1.212033 18 -0.60528955 [19,] 1.138192 -1 1.79611574 [20,] 3.454956 20 -1.14942796 [21,] 1.776298 21 1.33147613 [22,] 1.471960 22 0.65926860 [23,] 96.076022 0 0.45825046 [24,] 1.359771 24 0.62660148 [25,] 1.108051 -1 -2.30447524 [26,] 1.038882 26 1.80092565 [27,] 1.719297 27 -0.01405962 [28,] 3.696800 -1 -0.33212669 [29,] 6.793580 29 0.28358103 [30,] 1.140321 30 -0.75380608 [31,] 69.411585 31 -0.34210455 [32,] 11.681829 32 1.39400218 [33,] 1.980047 33 -1.15812430 [34,] 6.521382 34 -1.59440032 [35,] 1.589795 35 -1.03585052 [36,] 71.669396 0 -0.06091484 [37,] 15.659469 37 -0.95993413 [38,] 1.928565 38 0.93385900 [39,] 1.138170 39 0.77540934 [40,] 1.939080 40 0.06628879 [41,] 2.092851 41 1.51795478 [42,] 10.322366 42 0.38394473 [43,] 62.058649 0 -0.11848924 [44,] 55.326818 0 -0.50033995 [45,] 22.866712 0 -1.22973080 [46,] 1.248777 46 1.50699171 [47,] 1.052387 47 -1.60512119 [48,] 1.304579 48 -0.94515289 [49,] 1.477914 -1 0.98440888 [50,] 1.364479 50 -1.52837184 [51,] 6.874675 0 0.88366645 [52,] 7.184373 -1 -1.73721796 [53,] 1.372746 53 1.79450340 [54,] 16.134302 -1 0.88973130 [55,] 2.619847 55 0.20157060 [56,] 3.079803 56 -0.21817915 [57,] 19.129748 0 -1.37019460 [58,] 2.364380 58 0.49073931 [59,] 4.376577 59 0.13280700 [60,] 1.108263 60 0.55740695 [61,] 99.767279 0 0.57441843 [62,] 1.401043 62 0.92237409 [63,] 2.638089 63 0.27917507 [64,] 1.809885 64 -0.83255871 [65,] 1.032053 65 -0.16200804 [66,] 1.124964 -1 0.57503182 [67,] 121.509653 0 0.87341865 [68,] 1.912180 68 0.50081941 [69,] 1.123240 69 1.66325449 [70,] 36.987249 -1 -0.24356056 [71,] 2.535763 71 0.21678123 [72,] 1.387551 72 1.30123798 [73,] 1.780667 -1 -1.15759830 [74,] 0.093716 0 -0.60943168 [75,] 45.763182 75 -0.03489918 [76,] 1.102329 76 -0.44264343 [77,] 1.225605 77 -0.02081011 [78,] 1.130118 78 0.35496530 [79,] 2.278332 79 -2.28353073 [80,] 1.367596 80 1.12561548 [81,] 36.542921 0 -0.22277303 [82,] 1.105251 82 0.38046687 [83,] 62.647017 0 0.15329150 [84,] 4.449773 84 -0.57321001 [85,] 1.122518 -1 0.40204439 [86,] 1.248854 86 2.35437648 [87,] 3.271822 87 0.36527550 [88,] 1.583235 88 -0.14255089 [89,] 36.259212 89 1.12899068 [90,] 26.257898 0 0.73035636 [91,] 2.465674 -1 -0.49969061 [92,] 2.037142 92 0.18011695 [93,] 1.076321 93 -2.59721574 [94,] 30.425119 94 1.00766624 [95,] 3.915904 95 -1.19791717 [96,] 28.153668 0 1.13879639 [97,] 1.008573 -1 -1.21757952 [98,] 1.976480 98 -0.40530044 [99,] 1.372950 99 -0.29324960[100,] 76.725819 0 -2.17550157