model{
#observation model
for(t in 1:T){
y[t]~dnorm(mu[t],tau)
mu[t]<-beta0[t]+beta1[t]*I[t]+beta2[t]*L[t]+beta3[t]*I[t]*L[t]
}
#state model
for(t in 2:T){
beta0[t]~dnorm(mu0[t],tau0)
beta1[t]~dnorm(mu1[t],tau1)
beta2[t]~dnorm(mu2[t],tau2)
beta3[t]~dnorm(mu3[t],tau3)
mu0[t]<-alp0*beta0[t-1]+gam0*E[t]
mu1[t]<-alp1*beta1[t-1]+gam1*E[t]
mu2[t]<-alp2*beta2[t-1]+gam2*E[t]
mu3[t]<-alp3*beta3[t-1]+gam3*E[t]
}
}#end of t
#priors on observation model
beta0[1]~dnorm(0.0,1.0)
beta1[1]~dnorm(0.0,1.0)
beta2[1]~dnorm(0.0,1.0)
beta3[1]~dnorm(0.0,1.0)
gam0~dnorm(0.0,1.0)
gam1~dnorm(0.0,1.0)
gam2~dnorm(0.0,1.0)
gam3~dnorm(0.0,1.0)
alp0~dnorm(0.0,1.0)
alp1~dnorm(0.0,1.0)
alp2~dnorm(0.0,1.0)
alp3~dnorm(0.0,1.0)
tau~dgamma(1.0,1.0)
tau0~dgamma(1.0,1.0)
tau1~dgamma(1.0,1.0)
tau2~dgamma(1.0,1.0)
tau3~dgamma(1.0,1.0)
sgm<-1/tau
sgm0<-1/tau0
sgm1<-1/tau1
sgm2<-1/tau2
sgm3<-1/tau3
#end of model
Data
list(T=9,
y=c(150,136,143,154,135,148,128,149,146),
I=c(0.38,0.62,0.56,0.39,0.61,0.4,0.53,0.42,0.46),
L=c(85,70,80,88,68,82,63,84,86),
E=c(8,8,8,9,9,10,10,10,10))
compile的时候,提示made use of undefined node alp3