全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 HLM专版
1105 1
2014-04-18

Let's say I have a data matrix d

pc = prcomp(d)# pc1 and pc2 are the principal components  pc1 = pc$rotation[,1] pc2 = pc$rotation[,2]

Then this should fit the linear regression model right?

r = lm(y ~ pc1+pc2)

But then I get this error :

Errormodel.frame.default(formula = y ~ pc1+pc2, drop.unused.levels = TRUE) :    unequal dimensions('pc1')

I guess there a packages out there who do this automatically, but this should work too?


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-4-18 03:29:54
Answer: you don't want pc$rotation, it's the rotation matrix and not the matrix of rotated values (scores).

Make up some data:

> x1 = runif(100)
> x2 = runif(100)
> y = rnorm(2+3*x1+4*x2)
> d = cbind(x1,x2)

> pc = prcomp(d)
> dim(pc$rotation)
[1] 2 2
Oops. The "x" component is what we want. From ?prcomp: "x: if ‘retx’ is true the value of the rotated data (the centred (and scaled if requested) data multiplied by the ‘rotation' matrix) is returned."

> dim(pc$x)
[1] 100   2
> lm(y~pc$x[,1]+pc$x[,2])

Call:
lm(formula = y ~ pc$x[, 1] + pc$x[, 2])

Coefficients:
(Intercept)    pc$x[, 1]    pc$x[, 2]  
    0.04942      0.14272     -0.13557
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群