Long-Run Growth Forecasting
出版社 Springer Berlin Heidelberg
DOI 10.1007/978-3-540-77680-2
版权 2008
ISBN 978-3-540-77679-6 (Print) 978-3-540-77680-2 (Online)
Subject Collection 商业和经济
SpringerLinkDate 2008年3月29日
Contents
1 The importance of long-run growth analysis . 1
1.1 Frequent forecast failures . . . . . 1
1.2 Strong demand - but little supply . . . . 3
1.3 Plan of work . . 6
1.3.1 Choosing a sensible theoretical model . . 6
1.3.2 Choosing the best econometric technique . . . . . . 8
2 Assessment of growth theories . 9
2.1 The search for a dynamic model . . . . . . 9
2.2 The basic neoclassical model . . 10
2.2.1 Application in cross-country analysis . . . 12
2.3 Focus on convergence . 13
2.3.1 Tests for conditional convergence . . . . . . 15
2.4 Models with deeper insights . . . 16
2.4.1 Including human capital (Lucas) . . . . . . 17
2.4.2 Modeling barriers to riches (Parente & Prescott) . . . . . . 18
2.5 Opening the theories further . . 19
2.5.1 Models with scale effects . . . . . . 20
2.5.2 Evolutionary models of growth . 21
2.5.3 Open-system models . . . 24
2.6 General critique of the standard approach . . . . 25
2.6.1 Production function cannot be estimated . . . . . . 25
2.6.2 Aggregate production function does not exist . . 28
2.6.3 The concept of TFP is not helpful . . . . . 29
2.6.4 Beyond neoclassical economics . 29
2.7 The augmented Kaldor model . 30
3 The dependent variable: GDP growth 35
3.1 Choosing the appropriate data source . 36X Contents
4 Labor input . . . . . 43
4.1 Population growth is endogenous . . . . . 43
4.2 Hours worked per capita are important 46
4.3 Age structure of the population . . . . . . 48
5 Physical capital . . 51
5.1 Measuring capital accumulation . . . . . . 52
5.1.1 Investment and changes in capital stocks . . . . . . 52
5.1.2 Different databases - different investment ratios 53
5.1.3 Capital stocks from perpetual inventory 54
5.2 Main insights on capital accumulation . 56
5.2.1 Investment ratios are not constant . . . . . 56
5.2.2 Investment ratios do not differ much across countries . . 56
5.2.3 Investment ratios are not proportional to changes in
the capital stock . . . . . . 60
5.2.4 Investment ratios are not proportional to levels of the
capital stock . . . 61
5.2.5 Capital productivity does not correlate with income . . . 61
5.2.6 Capital accumulation is not exogenous . 63
5.3 Proper modeling of capital accumulation . . . . . 63
6 Human capital . . . 67
6.1 Micro- and macroeconomic theory . . . . 69
6.1.1 Microeconomic analysis: labor economics . . . . . . 70
6.1.2 Macroeconomic models with different conclusions . . . . . . 71
6.2 Measures and empirical analysis . . . . . . 74
6.2.1 Best measure: years of education . . . . . 75
7 Openness . 81
7.1 Theory: higher efficiency . . . . . 83
7.1.1 Extent of the market and specialization 84
7.1.2 Good macro polices and more competition . . . . . 84
7.1.3 Additional influences of trade on income . . . . . . 86
7.2 Measuring openness . . . 86
7.2.1 Black market premium and tariffs . . . . . 87
7.2.2 The openness dummy . . 87
7.2.3 Best measure: adjusted trade share . . . . 88
7.3 Empirical debate: levels versus growth 90
8 Spatial linkages . . 95
8.1 Spatial economics - location matters . . 97
8.1.1 Absolute location: latitude and climate . 97
8.1.2 Relative location: rich neighbors 97
8.2 Constructing spatial GDP . . . . 98
8.3 Sum: Spatial linkages not much help . . 101Contents XI
9 Other determinants of GDP . . . 103
10 The theory of forecasting . . . . . . 105
10.1 The benefits of forecast experiments . . 106
10.2 The characteristics of good forecasts . . 106
10.3 Intercept correction and forecast combination . 109
11 The evolution of growth empirics . . . . . 113
11.1 Still widely used: cross-section 114
11.2 Weaknesses of cross-section regressions 116
11.2.1 Same production function assumed . . . . 117
11.2.2 Long-run growth path assumed to be constant and
the same across countries . . . . . . 117
11.2.3 Same pace of conditional convergence assumed . 118
11.2.4 Errors are assumed uncorrelated with the
explanatory variables . . 118
11.2.5 Right-hand side variables assumed exogenous . . 118
11.2.6 In sum: many assumptions are violated . 119
11.3 The climax of cross-section . . . 119
11.4 Advantages of panel techniques 121
11.4.1 Initial technology can differ across countries . . . 123
11.4.2 Dealing with endogeneity bias . . 123
11.4.3 Addressing lagged dependent bias . . . . . 124
11.4.4 Modeling heterogeneous technological progress . 125
11.4.5 Summary of results from panel regressions . . . . . 125
11.5 Non-stationary panel techniques . . . . . . 126
11.5.1 Pooled mean group technique . . 126
11.5.2 Testing unit roots and cointegration in panels . . 128
11.5.3 Panel unit root tests . . . 129
11.5.4 Panel cointegration tests . . . . . . 131
11.6 A two-stage estimation method 134
12 Estimation results . . . . . . 137
12.1 Correlation analysis . . . 137
12.2 Panel unit root tests . . 139
12.3 Panel cointegration test . . . . . . 142
12.4 The short-run forecasting models . . . . . 146
13 Forecast competitions and 2006-2020 forecasts . . . . . . 151
13.1 Forecast competition 2001-2005 . . . . . . 151
13.2 Forecast combination . 154
13.3 Forecast competition 1996-2005 . . . . . . 155
13.4 Forecasts for 2006-2020 155
13.5 Other long-run forecasting models . . . . 160XII Contents
14 Conclusion and outlook . 163
List of figures . 165
List of tables . 167
References . . . . 169
[此贴子已经被angelboy于2008-8-20 13:07:54编辑过]