lz菜鸟一枚,因为毕设用到了R,需要做几个线性回归,有一元和多元的,一元的模型如下:
建模用的是xt[,1],第一列,然后需要求xp[,1]的预测值,应该是一个10行1列的矩阵或者向量,怎么求?
> xt
[,1] [,2] [,3] [,4]
[1,] -0.07529309 1.580467967 -0.44053977 0.039589652
[2,] -0.81311151 -2.932986052 -0.91965670 0.145818141
[3,] 0.29205219 -0.155773921 -0.19321290 0.373922042
[4,] -0.58967533 -0.555759442 0.10147229 -1.914793549
[5,] -0.77835019 0.520743302 -1.38384991 0.510912872
[6,] -1.07198487 0.994278697 0.41070059 0.313505959
[7,] 0.41456312 -0.046386628 0.09873107 -0.307378076
[8,] -0.36873119 -0.827107951 0.22681848 1.074602532
[9,] 1.19689733 0.110860619 -0.28976905 0.319564293
[10,] -0.25852689 -0.166349536 -1.27124397 -0.331773017
[11,] 0.64495769 0.637691294 0.58603456 0.329858257
[12,] -1.35841260 0.498956093 -0.31468336 -1.565875714
[13,] 0.37903731 -0.115354190 -1.35472521 -0.959477996
[14,] -0.31926573 -1.982161054 -0.22664688 1.149804072
[15,] 0.85493490 0.901354226 1.45979752 0.651789988
[16,] 0.47270238 -0.398994433 1.01210483 2.712453627
[17,] -0.28095489 0.405076472 0.48968274 -0.153296744
[18,] 1.11205624 0.414071603 0.60660946 -0.322786058
[19,] 0.76966529 -2.072427675 -0.10629787 -0.745066193
[20,] 1.29285452 0.785859656 0.27397255 -0.429711462
[21,] 0.99009674 -0.030741826 0.53527233 -0.337558962
[22,] -0.85888080 1.567384136 1.84497294 0.123944759
[23,] 0.29076811 0.722183774 -0.15926964 -1.215760050
[24,] -0.15522129 0.775490257 -1.41605427 -1.278051248
[25,] -0.75798867 0.899136123 -0.41087551 -1.680157494
[26,] -1.07288776 -0.892107839 0.93908289 0.013274670
[27,] 0.24335963 -0.661441540 1.21216867 -0.327600804
[28,] -0.88897267 -0.779686798 -0.93598047 -1.196599021
[29,] 0.54971658 0.298666491 0.28220191 -0.008880562
[30,] -0.92523100 0.333245070 -0.33681012 -0.323385683
[31,] 0.11074028 -0.557917818 0.77320180 0.418749707
[32,] -0.92629055 0.236081680 -0.78158433 0.414105471
[33,] 1.58332374 0.393960592 1.15773096 1.054641490
[34,] 0.18596594 -0.135192597 0.77399798 0.193782929
[35,] 0.75887177 -0.193276617 0.50588124 -0.397430909
[36,] 1.82097446 1.219814742 1.35953600 0.171487902
[37,] -1.43414194 -0.349099742 0.15997044 0.441538935
[38,] -0.86412035 -1.032101363 -0.94255464 0.859466767
[39,] 0.88157542 0.089599313 -1.05503915 -1.317193464
[40,] -0.20155030 0.854056129 0.58590658 0.560202680
[41,] 1.21678156 -0.949921893 -0.14780668 1.358680111
[42,] -0.39319718 -0.234139643 -0.64763080 -0.522968500
[43,] 1.24392942 1.184635396 1.08663108 1.166262999
[44,] 0.13820405 -0.159906592 1.02765877 -0.068978943
[45,] 0.30942074 0.721098787 1.08068605 1.394148578
[46,] 0.58611730 0.337736362 1.33093656 -0.249645207
[47,] 1.34372642 -0.573715549 -0.09884140 -1.637964478
[48,] 0.63222322 0.356903931 -1.15845161 0.228298253
[49,] 0.13703243 0.409774103 -1.11410189 0.364445624
[50,] 0.20228217 -1.169719873 -1.23515657 -0.765270674
[51,] -0.53719604 0.766620693 0.27064330 0.204489815
[52,] -0.04437350 -1.279383765 -0.96509729 -0.114259706
[53,] 0.30736934 0.397798656 0.48847010 0.317607252
[54,] -0.38138687 0.113093644 1.31384810 -0.224746587
[55,] 0.19435562 -0.230955702 0.19487534 -0.791977915
[56,] 0.72191925 1.139998577 -0.41546691 -1.218303487
[57,] 0.28647546 -0.206762789 -2.29309077 -0.464484201
[58,] 0.58286218 0.425552681 0.96459047 0.316166037
[59,] 0.65275779 -0.452879672 -0.72885691 -1.001751340
[60,] 0.72320134 -0.395524370 -0.31497198 0.943090696
[61,] -0.30279194 -1.315876722 -0.88388305 0.018212587
[62,] 1.07283606 1.020117270 1.53653515 2.572225295
[63,] 0.05141834 -0.003753067 1.40565422 -0.728026441
[64,] 0.72512890 1.004131856 0.45173935 -0.438876903
[65,] 1.24765380 -0.330914654 -1.11146036 -0.628232857
[66,] -0.08585848 -1.702236603 -1.42987955 -1.521475929
[67,] 1.06311528 -1.012706692 -1.43097105 -1.143160660
[68,] 0.31635629 0.361029883 1.73377093 -0.213910347
[69,] -0.39008430 1.505945254 0.39639901 -1.107198412
[70,] 0.83884502 0.183906000 0.75329439 -0.229530061
[71,] -0.40659728 -0.084520368 -0.09354860 0.725955570
[72,] 0.45176323 1.149219006 2.50637368 -0.910407040
[73,] -1.61871040 0.147012717 1.00448939 -0.603258929
[74,] -1.66903296 0.936892711 -2.17055394 -1.089703954
[75,] -1.23163150 1.301289075 1.42039866 1.455100305
[76,] -1.86152980 -1.381121070 -1.07231572 -0.729858302
[77,] -0.17091313 0.830888368 -0.23405671 -0.103295607
[78,] 1.25999741 0.255009625 -0.70610488 -2.426445627
[79,] 0.28886177 1.921843058 1.56341572 -1.287861290
[80,] -0.28144059 0.561433275 -0.21344500 -0.914068233
[81,] -0.53500527 -0.178461269 0.14406987 1.258969448
[82,] -1.39555134 -0.873213925 0.54561415 -0.136823520
[83,] -0.27153102 0.986694876 -0.10143355 1.935262761
[84,] 1.77959697 2.180828532 0.46261742 0.609257137
[85,] 0.98005565 0.895714099 1.39551593 0.889506867
[86,] 1.26847491 1.263836893 0.84395935 0.859874938
[87,] -0.22777133 0.023138954 0.15471518 1.057854783
[88,] 1.11977481 1.897772283 -1.19867398 -0.218899234
[89,] -1.10754671 -0.217286224 -0.72547700 0.174526420
[90,] 1.84977643 -1.357182960 0.81873039 -0.417314183
> xp
[,1] [,2] [,3] [,4]
[1,] -0.9710420 2.21884789 2.38149900 -1.1723320
[2,] 0.6731039 -0.46184619 -1.38803847 0.4185116
[3,] -1.3552966 -1.18995928 0.29476399 -1.1290014
[4,] 0.3912002 -0.76959769 -1.74505043 -0.1761842
[5,] 1.5977703 -0.09888046 -0.76129112 0.2414394
[6,] -0.2496906 -0.09703123 -0.58484687 -1.3219854
[7,] -0.1703408 -1.45786166 -0.09276508 -1.3866091
[8,] -0.5481235 -0.53395061 -1.11274750 -0.7488708
[9,] 0.8329460 -0.34447609 -0.33229635 -1.9567128
[10,] -1.1394384 -1.41199530 0.95481775 -0.2558958
> fm
Call:
lm(formula = yt ~ xt[, 1])
Coefficients:
(Intercept) xt[, 1]
-0.03302 1.31891