全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
1579 2
2014-06-16
I am a new user of WinBUGS and have one question for your help. After running the following code, I got parameters of beta0 through beta4 (stats, density), but I don't know how to get the prediction of the last value of h, which I set to NA to model in the code.

Does anyone can given me a hint? Any advice would be greatly appreciated.

model {
for(i in 1: N) {
CF01 ~ dnorm(0, 20)
CF02  ~ dnorm(0, 1)
h ~ dpois (lambda )
log(lambda ) <- beta0 + beta1*CF03 + beta2*CF02 + beta3*CF01 + beta4*IND
}
beta0 ~ dnorm(0.0, 1.0E-6)
beta1 ~ dnorm(0.0, 1.0E-6)
beta2 ~ dnorm(0.0, 1.0E-6)
beta3 ~ dnorm(0.0, 1.0E-6)
beta4  <- log(p)
p ~ dunif(lower, upper)
}

INITS
list(beta0 = 0, beta1 = 0, beta2 = 0, beta3 = 0, p = 0.9)

DATA(LIST)
list(N = 154, lower = 0.80, upper = 0.95,

h = c(1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 3, 0, 0, 0, 2, 0, 1, 0, 4, 2,
3, 0, 2, 1, 1, 2, 2, 2, 3, 4, 2, 3, 1, 0, 1, 3, 3, 3, 1, 0, 1,
0, 5, 2, 1, 2, 1, 3, 3, 1, 1, 0, 2, 2, 0, 3, 0, 0, 3, 2, 2, 2,
1, 0, 3, 3, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 0, 2, 1, 0, 0, 2, 5,
0, 2, 1, 0, 2, 1, 2, 2, 2, 0, 3, 2, 1, 3, 3, 3, 3, 0, 1, 3, 3,
3, 1, 0, 0, 1, 2, 1, 0, 1, 4, 1, 1, 1, 1, 2, 1, 3, 0, 0, 1, 1,
1, 1, 0, 2, 1, 0, 0, 1, 1, 5, 1, 1, 1, 3, 0, 1, 1, 1, 0, 2, 1,
0, 3, 3, 0, 0, 1, 2, 6, NA),

CF03 = c(-1.575, 0.170, -1.040, -0.010, -0.750,
0.665, -0.250, 0.145, -0.345, -1.915, -1.515,
0.215, -1.040, -0.035, 0.805, -0.860, -1.775,
1.725, -1.345, 1.055, -1.935, -0.160, -0.075,
-1.305, 1.175, 0.130, -1.025, -0.630, 0.065,
-0.665, 0.415, -0.660, -1.145, 0.165, 0.955,
-0.920, 0.250, -0.365, 0.750, 0.045, -2.760,
-0.520, -0.095, 0.700, 0.155, -0.580, -0.970,
-0.685, -0.640, -0.900, -0.250, -1.355, -1.330,
0.440, -1.505, -1.715, -0.330, 1.375, -1.135,
-1.285, 0.605, 0.360, 0.705, 1.380, -2.385, -1.875,
-0.390, 0.770, 1.605, -0.430, -1.120, 1.575, 0.440,
-1.320, -0.540, -1.490, -1.815, -2.395, 0.305,
0.735, -0.790, -1.070, -1.085, -0.540, -0.935,
-0.790, 1.400, 0.310, -1.150, -0.725, -0.150,
-0.640, 2.040, -1.180, -0.235, -0.070, -0.500,
-0.750, -1.450, -0.235, -1.635, -0.460, -1.855,
-0.925, 0.075, 2.900, -0.820, -0.170, -0.355,
-0.170, 0.595, 0.655, 0.070, 0.330, 0.395, 1.165,
0.750, -0.275, -0.700, 0.880, -0.970, 1.155, 0.600,
-0.075, -1.120, 1.480, -1.255, 0.255, 0.725,
-1.230, -0.760, -0.380, -0.015, -1.005, -1.605,
0.435, -0.695, -1.995, 0.315, -0.385, -0.175,
-0.470, -1.215, 0.780, -1.860, -0.035, -2.700,
-1.055, 1.210, 0.600, -0.710, 0.425, 0.155, -0.525,
-0.565),

CF02 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0.38, 0.06, -0.94,
-0.02, -0.28, -0.78, -0.95, 2.33, 1.43, 1.24, 1.26,
-0.75, -1.5, -2.09, 1.01, -0.05, 2.48, 2.48, 0.46,
0.46, -0.2, -1.11, 0.52, -0.37, 0.58, 0.86, 0.59,
-0.12, -1.33, 1.4, -1.84, -1.4, -0.76, -0.23,
-1.78, -1.43, 1.2, 0.32, 1.87, 0.43, -1.71, -0.54,
-1.25, -1.01, -1.98, 0.52, -1.07, -0.44, -0.24,
-1.31, -2.14, -0.43, 2.47, -0.09, -1.32, -0.3,
-0.99, 1.1, 0.41, 1.01, -0.19, 0.45, -0.07, -1.41,
0.87, 0.68, 1.61, 0.36, -1.06, -0.44, -0.16, 0.72,
-0.69, -0.94, 0.11, 1.25, 0.33, -0.05, 0.87, -0.37,
-0.2, -2.22, 0.26, -0.53, -1.59, 0.04, 0.16, -2.66,
-0.21, -0.92, 0.25, -1.36, -1.62, 0.61, -0.2, 0,
1.14, 0.27, -0.64, 2.29, -0.56, -0.59, 0.44, -0.05,
0.56, 0.71, 0.32, -0.38, 0.01, -1.62, 1.74, 0.27, 0.97,
1.22, -0.21, -0.05, 1.15, 1.49, -0.15, 0.05, -0.87,
-0.3, -0.08, 0.5, 0.84, -1.67, 0.69, 0.47, 0.44,
-1.35, -0.24, -1.5, -1.32, -0.08, 0.76, -0.57,
-0.84, -1.11, 1.94, -0.68),

CF01 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, -0.117, -0.211, -0.333, -0.229, -0.272,
-0.243, -0.148, 0.191, -0.263, -0.239, -0.168,
-0.381, -0.512, -0.338, -0.296, 0.067, 0.104,
-0.254, -0.167, -0.526, -0.096, -0.43, 0.013,
-0.438, -0.297, -0.131, -0.098, -0.046, -0.063,
-0.194, -0.155, -0.645, -0.603, -0.374, -0.214,
-0.165, -0.509, -0.171, -0.442, -0.468, -0.289,
-0.427, -0.519, -0.454, 0.046, -0.275, -0.401,
-0.542, -0.488, -0.52, -0.018, -0.551, -0.444,
-0.254, -0.286, 0.048, -0.03, -0.015, -0.219,
-0.029, 0.059, 0.007, 0.157, 0.141, -0.035, 0.136,
0.526, 0.113, 0.22, -0.022, -0.173, 0.021, -0.027,
0.261, 0.082, -0.266, -0.284, -0.097, 0.097, -0.06,
0.397, 0.315, 0.302, -0.026, 0.268, -0.111, 0.084,
0.14, -0.073, 0.287, 0.061, 0.035, -0.022, -0.091,
-0.22, -0.021, -0.17, -0.184, 0.121, -0.192,
-0.24, -0.283, -0.003, -0.45, -0.138, -0.143,
0.017, -0.245, 0.003, 0.108, 0.015, -0.219, 0.09,
-0.22, -0.004, -0.178, 0.396, 0.204, 0.342, 0.079,
-0.034, -0.122, -0.24, -0.125, 0.382, 0.072, 0.294,
0.577, 0.4, 0.213, 0.359, 0.074, 0.388, 0.253, 0.167),

IND = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-6-16 12:07:31
ust add the variable h to the list of the parameters to be monitored. If you are using package like R2WinBUGS, then add variable h to to the list passed to parameters.to.save argument to the bugs function. Then look at your last value in h (the one with NA) - you will get a posterior distribution there.

This is usual way to make predictions in bayesian inference (see also this question). It is nice and simple! No more separation of parameter evaluation and prediction. Everything is done at once. The posterior distrubution of parameters is given by the actual data and propagated to the NA values (as "predictions").
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-6-16 12:08:15
As far as I can tell, the lambdas are exactly what one wants to predict: this is a generalized linear model for a Poisson distribution with log link and the lambdas are the predicted Poisson parameters. They have not been observed. I believe all one needs to do here is to set a monitor on lambda[N].
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群