全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
4867 10
2008-04-24

207880.pdf
大小:(3.03 MB)

只需: 10 个论坛币  马上下载

要钱不多,绝大多数人能付得起。如果有真的很需要,又暂时付不起的,我可以考虑给你传。付得起的,就算给本人一个鼓励吧,谢谢各位达人!

详细目录:

1. Introduction 1
1.1 Two Examples, 3
1.1.1 Public School Class Sizes, 4
1.1.2 Value at Risk, 5
1.2 Observables, Unobservables, and Objects of Interest, 7
1.3 Conditioning and Updating, 10
1.4 Simulators, 13
1.5 Modeling, 15
1.6 Decisionmaking, 17
2. Elements of Bayesian Inference 21
2.1 Basics, 21
2.2 Sufficiency, Ancillarity, and Nuisance Parameters, 31
2.2.1 Sufficiency, 31
2.2.2 Ancillarity, 33
2.2.3 Nuisance Parameters, 35
2.3 Conjugate Prior Distributions, 38
2.4 Bayesian Decision Theory and Point Estimation, 46
2.5 Credible Sets, 56
2.6 Model Comparison, 61
2.6.1 Marginal Likelihoods, 62
2.6.2 Predictive Densities, 66
v
vi CONTENTS
3. Topics in Bayesian Inference 73
3.1 Hierarchical Priors and Latent Variables, 73
3.2 Improper Prior Distributions, 78
3.3 Prior Robustness and the Density Ratio Class, 87
3.4 Asymptotic Analysis, 91
3.5 The Likelihood Principle, 97
4. Posterior Simulation 105
4.1 Direct Sampling, 106
4.2 Acceptance and Importance Sampling, 110
4.2.1 Acceptance Sampling, 111
4.2.2 Importance Sampling, 114
4.3 Markov Chain Monte Carlo, 119
4.3.1 The Gibbs Sampler, 120
4.3.2 The Metropolis–Hastings Algorithm, 122
4.4 Variance Reduction, 127
4.4.1 Concentrated Expectations, 128
4.4.2 Antithetic Sampling, 130
4.5 Some Continuous State Space Markov Chain Theory, 133
4.5.1 Convergence of the Gibbs Sampler, 137
4.5.2 Convergence of the Metropolis–Hastings Algorithm, 139
4.6 Hybrid Markov Chain Monte Carlo Methods, 142
4.6.1 Transition Mixtures, 142
4.6.2 Metropolis within Gibbs, 143
4.7 Numerical Accuracy and Convergence in Markov Chain
Monte Carlo, 145
5. Linear Models 153
5.1 BACC and the Normal Linear Regression Model, 154
5.2 Seemingly Unrelated Regressions Models, 162
5.3 Linear Constraints in the Linear Model, 169
5.3.1 Linear Inequality Constraints, 170
5.3.2 Conjectured Linear Restrictions, Linear Inequality Constraints,
and Covariate Selection, 172
5.4 Nonlinear Regression, 175
5.4.1 Nonlinear Regression with Smoothness Priors, 176
5.4.2 Nonlinear Regression with Basis Functions, 185
CONTENTS vii
6. Modeling with Latent Variables 195
6.1 Censored Normal Linear Models, 196
6.2 Probit Linear Models, 200
6.3 The Independent Finite State Model, 202
6.4 Modeling with Mixtures of Normal Distributions, 205
6.4.1 The Independent Student-t Linear Model, 206
6.4.2 Normal Mixture Linear Models, 208
6.4.3 Generalizing the Observable Outcomes, 215
7. Modeling for Time Series 221
7.1 Linear Models with Serial Correlation, 222
7.2 The First-Order Markov Finite State Model, 226
7.2.1 Inference in the Nonstationary Model, 229
7.2.2 Inference in the Stationary Model, 230
7.3 Markov Normal Mixture Linear Model, 233
8. Bayesian Investigation 245
8.1 Implementing Simulation Methods, 246
8.1.1 Density Ratio Tests, 247
8.1.2 Joint Distribution Tests, 251
8.2 Formal Model Comparison, 255
8.2.1 Bayes Factors for Modeling with Common Likelihoods, 255
8.2.2 Marginal Likelihood Approximation Using Importance
Sampling, 256
8.2.3 Marginal Likelihood Approximation Using Gibbs Sampling, 257
8.2.4 Density Ratio Marginal Likelihood Approximation, 259
8.3 Model Specification, 262
8.3.1 Prior Predictive Analysis, 262
8.3.2 Posterior Predictive Analysis, 267
8.4 Bayesian Communication, 271
8.5 Density Ratio Robustness Bounds, 277
Bibliography 283
Author Index 293
Subject Index 295


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2008-5-28 23:40:00
谢谢lz免费分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-5-29 14:42:00
thank you for sharing it
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-6-30 12:22:00
thany you ver much
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-5-9 17:26:00
谢谢楼主!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-7-14 10:35:07
thank you very very much
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群