# 选择iris数据集为例,iris共有150条数据,内容如下head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## Sepal.Length\Sepal.Width\Petal.Length\Petal.Width为分类的四个维度,Species为分类结果# 1、对iris进行归一化处理,scale归一化的公式为(x-mean(x))/sqrt(var(x))iris_s <- data.frame(scale(iris[, 1:4))iris_s <- cbind(iris_s, iris[, 5)names(iris_s)[5 = "Species"# 1、对iris数据集随机选择其中的100条记录作为已知分类的样本集sample.list <- sample(1:150, size = 100)iris.known <- iris_s[sample.list, # 2、剩余50条记录作为未知分类的样本集(测试集)iris.unknown <- iris_s[-sample.list, ## 3、对测试集中的每一个样本,计算其与已知样本的距离,因为已经归一化,此处直接使用欧氏距离length.known <- nrow(iris.known)length.unknown <- nrow(iris.unknown)
for (i in 1:length.unknown) { # dis 记录与每个已知分类样本的距离及改样本的分类 dis_to_known <- data.frame(dis = rep(0, length.known)) for (j in 1:length.known) { # 计算距离 dis_to_known[j, 1 <- dist(rbind(iris.unknown[i, 1:4, iris.known[j,1:4), method = "euclidean") # 保存已知样本的分类 dis_to_known[j, 2 <- iris.known[j, 5 names(dis_to_known)[2 = "Species" }
# 按距离从小到大排序 dis_to_known <- dis_to_known[order(dis_to_known$dis),
# Knn中的K,定义了具体最近的K个已知分类的样本 k <- 5 # 按因子进行计数 type_freq <- as.data.frame(table(dis_to_known[1:k, $Species)) # 按计数值进行排序 type_freq <- type_freq[order(-type_freq$Freq),
# 记录频数最大的类型 iris.unknown[i, 6 <- type_freq[1, 1
}
names(iris.unknown)[6 = "Species.pre"
# 输出分类结果
iris.unknown[, 5:6
## Species Species.pre
## 3 setosa setosa
## 4 setosa setosa
## 5 setosa setosa
## 7 setosa setosa
## 15 setosa setosa
## 20 setosa setosa
## 21 setosa setosa
## 30 setosa setosa
## 33 setosa setosa
## 35 setosa setosa
## 36 setosa setosa
## 38 setosa setosa
## 40 setosa setosa
## 41 setosa setosa
## 49 setosa setosa
## 51 versicolor versicolor
## 54 versicolor versicolor
## 56 versicolor versicolor
## 57 versicolor versicolor
## 59 versicolor versicolor
## 63 versicolor versicolor
## 70 versicolor versicolor
## 74 versicolor versicolor
## 75 versicolor versicolor
## 78 versicolor versicolor
## 80 versicolor versicolor
## 87 versicolor versicolor
## 89 versicolor versicolor
## 95 versicolor versicolor
## 96 versicolor versicolor
## 98 versicolor versicolor
## 100 versicolor versicolor
## 103 virginica virginica
## 108 virginica virginica
## 112 virginica virginica
## 115 virginica virginica
## 117 virginica virginica
## 119 virginica virginica
## 122 virginica virginica
## 124 virginica versicolor
## 127 virginica virginica
## 129 virginica virginica
## 130 virginica virginica
## 131 virginica virginica
## 132 virginica virginica
## 134 virginica versicolor
## 142 virginica virginica
## 144 virginica virginica
## 148 virginica virginica
## 149 virginica virginica
上面结果中,Species为样本实际分类,Species.pre为Knn算法的分类。经过多次实验,50个样本中,有5个左右样本的分类判断错误,正确率在90%。可见Knn算法效果较好,原理容易理解。
Knn算法存在的问题:
1、k值的确定是个难题。
2、如果距离最近的k个已知分类样本中,频数最高的类型有多个(频数相同),如何选择对未知样本的分类?目前看是随机的。
3、如果有n个未知类型样本,m个已知类型样本,则需要计算n*m个距离,计算量较大,且需存储全部数据集合,空间复杂度也较大。 4、能否把预测的样本分类加入到已知类别集合中,对剩余的未知类型样本进行分类? 5、归一化放在所有处理的最前面,这样需要知道全部的样本集合(已知分类+未知分类)来构建分类器,而实际上未知分类的样本并不一定能事先获得,这样如何进行归一化处理?