全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
6213 22
2014-07-16


Neural Networks and Statistical Learning


Ke-Lin Du (Author), M. N. S. Swamy (Author)


Book Description
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content.


Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included.

Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

Editorial Reviews

Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content.

Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included.


Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

About the Author

Ke-Lin Du is currently the Chief Scientist at Enjoyor Inc., China. He is also an Affiliate Associate Professor in Department of Electrical and Computer Engineering at Concordia University, Canada. Prior to joining Enjoyor Inc. in 2012, he held positions with Huawei Technologies, the China Academy of Telecommunication Technology, the Chinese University of Hong Kong, the Hong Kong University of Science and Technology, and Concordia University. He has published two books and over 50 papers, and filed over 15 patents. His current research interests include signal processing, neural networks, intelligent systems, and wireless communications. He is a Senior Member of the IEEE.M.N.S. Swamy is currently a Research Professor and holder of the Concordia Tier I Research Chair Signal Processing in the Department of Electrical and Computer Engineering, Concordia University, where he was Dean of the Faculty of Engineering and Computer Science from 1977 to 1993 and the founding Chair of the EE department. He has published extensively in the areas of circuits, systems and signal processing, and co-authored five books. Professor Swamy is a Fellow of the IEEE, IET (UK) and EIC (Canada), and has received many IEEE-CAS awards, including the Guillemin-Cauer award in 1986, as well as the Education Award and the Golden Jubilee Medal, both in 2000.

Product Details
  • Hardcover: 824 pages
  • Publisher: Springer; 2014 edition
  • Language: English
  • ISBN-10: 144715570X
  • ISBN-13: 978-1447155706

本帖隐藏的内容

Neural Networks and Statistical Learning Springer 2014.pdf
大小:(10.71 MB)

只需: 20 个论坛币  马上下载






二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-7-16 01:32:18
名字很有吸引力
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-7-16 01:36:26
kankan
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-7-16 01:41:06
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-7-16 08:08:07
哦,看看
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-7-16 18:39:04
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群