全部版块 我的主页
论坛 经管考试 九区 经管留学 外语学习
2986 1
2014-09-03
高清版本 Notes on Linear Algebra  by Peter J. Cameron
pdf 文件 共124 页
书籍目录




Contents
1 Vector spaces 3
1.1 Definitions . . . . . . . . . . . . . . . . . . . . .. . . . . . 3
1.2 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Row and column vectors . . . . . . . . .  . . . . . . . 9
1.4 Change of basis . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Subspaces and direct sums . . . . . . . . . . . . . . 13
2 Matrices and determinants 15
2.1 Matrix algebra . . . . . . . . . . . . . . . . . . .  . . . . 15
2.2 Row and column operations . . . . . . . . . . . . . . 16
2.3 Rank . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . 20
2.4 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Calculating determinants . . . . . . . . . . . .  . . . . 25
2.6 The Cayley–Hamilton Theorem . . . . . . . . . .  . . 29
3 Linear maps between vector spaces 33
3.1 Definition and basic properties . . . . . . . . . . . . . 33
3.2 Representation by matrices . . . . . . . . . . . . . . . 35
3.3 Change of basis . . . . . . . . . . . . . . . .  . . . . . . . 37
3.4 Canonical form revisited . . . . . . . . . . . . . . . . . . 39
4 Linear maps on a vector space  . . . .. . . . . . .. . . . . 41
4.1 Projections and direct sums . . . . . . .. . . . . . . . . 41
4.2 Linear maps and matrices . . . . . . . . . . . . . . . . . 43
4.3 Eigenvalues and eigenvectors . . . . . . . . . . . .. . . 44
4.4 Diagonalisability . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Characteristic and minimal polynomials . . . . . . . . 48
4.6 Jordan form . . . . . . . . . . . . . . . . . . . . . . .  . . . . 51
4.7 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
v

5 Linear and quadratic forms 55
5.1 Linear forms and dual space . . . . . . . . . . . . . . . . . . . . 55
5.1.1 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.2 Change of basis . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.1 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Reduction of quadratic forms . . . . . . . . . . . . . . . . 60
5.2.3 Quadratic and bilinear forms . . . . . . . . . . . . . . . . 62
5.2.4 Canonical forms for complex and real forms . . . . . . . 64
6 Inner product spaces 67
6.1 Inner products and orthonormal bases . . . . . . . . . . . . . . . 67
6.2 Adjoints and orthogonal linear maps . . . . . . . . . . . . . . . . 70
7 Symmetric and Hermitian matrices 73
7.1 Orthogonal projections and orthogonal decompositions . . . . . . 73
7.2 The Spectral Theorem . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Quadratic forms revisited . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Simultaneous diagonalisation . . . . . . . . . . . . . . . . . . . . 78
8 The complex case 81
8.1 Complex inner products . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 The complex Spectral Theorem . . . . . . . . . . . . . . . . . . . 82
8.3 Normal matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9 Skew-symmetric matrices 85
9.1 Alternating bilinear forms . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Skew-symmetric and alternating matrices . . . . . . . . . . . . . 86
9.3 Complex skew-Hermitian matrices . . . . . . . . . . . . . . . . . 88
A Fields and vector spaces 89
B Vandermonde and circulant matrices 93
C The Friendship Theorem 97
D Who is top of the league? 101
E Other canonical forms 105
F Worked examples 107





二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-9-3 09:53:46
怎么附件没有传上去
附件列表

Linear Algebra.rar

大小:392.2 KB

只需: 1 个论坛币  马上下载

高清版本 Notes on Linear Algebra by Peter J. Cameron

本附件包括:

  • Linear Algebra.pdf

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群