函数通过“def”关键字进行声明。可选参数以集合的方式出现在函数声明中并紧跟着必选参数,可选参数可以在函数声明中被赋予一个默认值。已命名的参数需要赋值。函数可以返回一个元组(使用元组拆包可以有效返回多个值)。Lambda函数是由一个单独的语句组成的特殊函数,参数通过引用进行传递,但对于不可变类型(例如元组,整数,字符串等)则不能够被改变。这是因为只传递了该变量的内存地址,并且只有丢弃了旧的对象后,变量才能绑定一个对象,所以不可变类型是被替换而不是改变(译者注:虽然Python传递的参数形式本质上是引用传递,但是会产生值传递的效果)。例如:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
| # 作用等同于 def funcvar(x): return x + 1
funcvar = lambda x: x + 1
>>> print funcvar(1)
2
# an_int 和 a_string 是可选参数,它们有默认值
# 如果调用 passing_example 时只指定一个参数,那么 an_int 缺省为 2 ,a_string 缺省为 A default string。如果调用 passing_example 时指定了前面两个参数,a_string 仍缺省为 A default string。
# a_list 是必备参数,因为它没有指定缺省值。
def passing_example(a_list, an_int=2, a_string="A default string"):
a_list.append("A new item")
an_int = 4
return a_list, an_int, a_string
>>> my_list = [1, 2, 3]
>>> my_int = 10
>>> print passing_example(my_list, my_int)
([1, 2, 3, 'A new item'], 4, "A default string")
>>> my_list
[1, 2, 3, 'A new item']
>>> my_int
10
|
类
Python支持有限的多继承形式。私有变量和方法可以通过添加至少两个前导下划线和最多尾随一个下划线的形式进行声明(如“__spam”,这只是惯例,而不是Python的强制要求)。当然,我们也可以给类的实例取任意名称。例如:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
| class MyClass(object):
common = 10
def __init__(self):
self.myvariable = 3
def myfunction(self, arg1, arg2):
return self.myvariable
# This is the class instantiation
>>> classinstance = MyClass()
>>> classinstance.myfunction(1, 2)
3
# This variable is shared by all classes.
>>> classinstance2 = MyClass()
>>> classinstance.common
10
>>> classinstance2.common
10
# Note how we use the class name
# instead of the instance.
>>> MyClass.common = 30
>>> classinstance.common
30
>>> classinstance2.common
30
# This will not update the variable on the class,
# instead it will bind a new object to the old
# variable name.
>>> classinstance.common = 10
>>> classinstance.common
10
>>> classinstance2.common
30
>>> MyClass.common = 50
# This has not changed, because "common" is
# now an instance variable.
>>> classinstance.common
10
>>> classinstance2.common
50
# This class inherits from MyClass. The example
# class above inherits from "object", which makes
# it what's called a "new-style class".
# Multiple inheritance is declared as:
# class OtherClass(MyClass1, MyClass2, MyClassN)
class OtherClass(MyClass):
# The "self" argument is passed automatically
# and refers to the class instance, so you can set
# instance variables as above, but from inside the class.
def __init__(self, arg1):
self.myvariable = 3
print arg1
>>> classinstance = OtherClass("hello")
hello
>>> classinstance.myfunction(1, 2)
3
# This class doesn't have a .test member, but
# we can add one to the instance anyway. Note
# that this will only be a member of classinstance.
>>> classinstance.test = 10
>>> classinstance.test
10
|
Python中的异常由 try-except [exceptionname] 块处理,例如:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| def some_function():
try:
# Division by zero raises an exception
10 / 0
except ZeroDivisionError:
print "Oops, invalid."
else:
# Exception didn't occur, we're good.
pass
finally:
# This is executed after the code block is run
# and all exceptions have been handled, even
# if a new exception is raised while handling.
print "We're done with that."
>>> some_function()
Oops, invalid.
We're done with that.
|
外部库可以使用 import [libname] 关键字来导入。同时,你还可以用 from [libname] import [funcname] 来导入所需要的函数。例如:
1 2 3 4 5 6
| import random
from time import clock
randomint = random.randint(1, 100)
>>> print randomint
64
|
Python针对文件的处理有很多内建的函数库可以调用。例如,这里演示了如何序列化文件(使用pickle库将数据结构转换为字符串):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| import pickle
mylist = ["This", "is", 4, 13327]
# Open the file C:\\binary.dat for writing. The letter r before the
# filename string is used to prevent backslash escaping.
myfile = open(r"C:\\binary.dat", "w")
pickle.dump(mylist, myfile)
myfile.close()
myfile = open(r"C:\\text.txt", "w")
myfile.write("This is a sample string")
myfile.close()
myfile = open(r"C:\\text.txt")
>>> print myfile.read()
'This is a sample string'
myfile.close()
# Open the file for reading.
myfile = open(r"C:\\binary.dat")
loadedlist = pickle.load(myfile)
myfile.close()
>>> print loadedlist
['This', 'is', 4, 13327]
|
- 数值判断可以链接使用,例如 1<a<3 能够判断变量 a 是否在1和3之间。
- 可以使用 del 删除变量或删除数组中的元素。
- 列表推导式(List Comprehension)提供了一个创建和操作列表的有力工具。列表推导式由一个表达式以及紧跟着这个表达式的for语句构成,for语句还可以跟0个或多个if或for语句,来看下面的例子:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
| >>> lst1 = [1, 2, 3]
>>> lst2 = [3, 4, 5]
>>> print [x * y for x in lst1 for y in lst2]
[3, 4, 5, 6, 8, 10, 9, 12, 15]
>>> print [x for x in lst1 if 4 > x > 1]
[2, 3]
# Check if an item has a specific property.
# "any" returns true if any item in the list is true.
>>> any([i % 3 for i in [3, 3, 4, 4, 3]])
True
# This is because 4 % 3 = 1, and 1 is true, so any()
# returns True.
# Check how many items have this property.
>>> sum(1 for i in [3, 3, 4, 4, 3] if i == 4)
2
>>> del lst1[0]
>>> print lst1
[2, 3]
>>> del lst1
|
本教程并未涵盖Python语言的全部内容(甚至连一小部分都称不上)。Python有非常多的库以及很多的功能特点需要学习,所以要想学好Python你必须在此教程之外通过其它方式,例如阅读Dive into Python。我希望这个教程能给你一个很好的入门指导。如果你觉得本文还有什么地方值得改进或添加,或是你希望能够了解Python的哪方面内容,请留言。