初学者,程序完全照抄,求大神纠错

,SAR固定效应是程序包弄的不知道哪里出了问题。。。
load 'pc.mat' pc;
load 'wl.mat' wl;
load 'pc1.mat' pc1;
T=6;
N=30;
W=normw(wl);
y=pc1(:,[1]);
x=pc(:,[1:7]);
xconstant=ones(N*T,1);
[nobs K]=size(x);
% ols estimation
results=ols(y,[xconstant,x]);
vnames=strvcat('gy','intercept','y0','pc','gpc','emp','edu','inv','fir');
prt_reg(results,vnames,1);
sige=results.sige*((nobs-K)/nobs);
loglikols=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid;
LMsarsem_panel(results,W,y,[xconstant,x]);%LM tests
%双向固定效应模型
info.lflag=0;
info.model=3;
results=sar_panel_FE(y,x,W,T,info);
vnames=strvcat('gy','y0','pc','gpc','emp','edu','inv','fir');
prt_spnew(results,vnames,1);
%地区固定效应
info.lflag=0;
info.model=0;
results=sar_panel_FE(y,x,W,T,info);
vnames=strvcat('gy','y0','pc','gpc','emp','edu','inv','fir');
prt_spnew(results,vnames,1);
运行结果如下:
Ordinary Least-squares Estimates
Dependent Variable = gy
R-squared = 0.7978
Rbar-squared = 0.7896
sigma^2 = 388.7788
Durbin-Watson = 1.3944
Nobs, Nvars = 180, 8
***************************************************************
Variable Coefficient t-statistic t-probability
intercept 246.416677 14.575915 0.000000
y0 20.637595 3.966290 0.000107
pc 22.662274 2.327235 0.021118
gpc -11.417734 -1.514625 0.131703
emp -11.945173 -1.633294 0.104236
edu 15.424211 2.189925 0.029876
inv -21.340470 -2.401367 0.017400
fir 63.665202 7.820010 0.000000
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 3.177681e-017.
> In LMsarsem_panel at 38
In space at 21
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.098193e-017.
> In LMsarsem_panel at 38
In space at 21
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 7.983944e-019.
> In LMsarsem_panel at 38
In space at 21
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.105254e-017.
> In LMsarsem_panel at 38
In space at 21
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 4.869742e-017.
> In LMsarsem_panel at 38
In space at 21
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.324269e-017.
> In LMsarsem_panel at 38
In space at 21
LM test no spatial lag, probability = 20.1094, 0.0000
robust LM test no spatial lag, probability = 31.2385, 0.0000
LM test no spatial error, probability = 70.2445, 0.0000
robust LM test no spatial error, probability = 81.3736, 0.0000
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.048182e-016.
> In sar_panel_FE at 352
In space at 25
Pooled model with spatially lagged dependent variable, spatial and time period fixed effects
Dependent Variable = gy
R-squared = 0.9731
corr-squared = 0.2338
sigma^2 = 49.5059
Nobs,Nvar,#FE = 180, 8, 13
log-likelihood = NaN
# of iterations = 1
min and max rho = -1.0000, 1.0000
total time in secs = 0.2970
time for optimiz = 0.0940
time for lndet = 0.0310
No lndet approximation used
***************************************************************
Variable Coefficient Asymptot t-stat z-probability
y0 -17.027376 -1.806973 0.070766
pc -20.741611 -2.397489 0.016508
gpc -20.375769 -3.560497 0.000370
emp 10.192561 1.056646 0.290673
edu 21.639652 2.493960 0.012633
inv -5566589.110156 -1.016164 0.309551
fir 5566550.776313 1.016157 0.309555
W*dep.var. -0.236068 -1.722842 0.084917
Pooled model with spatially lagged dependent variable, no fixed effects
Dependent Variable = gy
R-squared = 0.4770
corr-squared = 0.5369
sigma^2 = 961.1517
Nobs,Nvar,#FE = 180, 8, 7
log-likelihood = NaN
# of iterations = 1
min and max rho = -1.0000, 1.0000
total time in secs = 0.0630
time for optimiz = 0.0160
time for lndet = 0.0160
No lndet approximation used
***************************************************************
Variable Coefficient Asymptot t-stat z-probability
y0 22.494983 2.719872 0.006531
pc 81.851928 5.572041 0.000000
gpc 26.294205 2.212825 0.026910
emp -43.051587 -3.745458 0.000180
edu -62.503393 -6.772293 0.000000
inv 8.056630 0.589667 0.555414
fir 32.305173 2.503307 0.012304
W*dep.var. -0.236068 -1.893304 0.058318