大家好,使用SPSS做典型相关分析,y构面由y1,y2,y3,y4,y5五个问题组成,z构面由z11,z12,z13三个问题组成,两组变量分别是y1,y2,y3,y4,y5和z11,z12,z13,SPSS输出结果如下,那么这两组变量的整体相关系数(y和z的相关系数)如何读取或计算呢? 非常感谢!
-----------SPSS输出-----------------------------------
Run MATRIX procedure:
Correlations for Set-1
y1 y2 y3 y4 y5
y1 1.0000 .6643 .6401 .6256 .6195
y2 .6643 1.0000 .6405 .6265 .6302
y3 .6401 .6405 1.0000 .7022 .6732
y4 .6256 .6265 .7022 1.0000 .6988
y5 .6195 .6302 .6732 .6988 1.0000
Correlations for Set-2
z11 z12 z13
z11 1.0000 .6718 .5935
z12 .6718 1.0000 .6428
z13 .5935 .6428 1.0000
Correlations Between Set-1 and Set-2
z11 z12 z13
y1 .5290 .4634 .4156
y2 .5142 .5073 .4349
y3 .4770 .4990 .5058
y4 .4903 .5334 .4507
y5 .4729 .5130 .4701
Canonical Correlations
1 .659
2 .208
3 .135
Test that remaining correlations are zero:
Wilk's Chi-SQ DF Sig.
1 .532 250.320 15.000 .000
2 .939 24.902 8.000 .002
3 .982 7.301 3.000 .063
Standardized Canonical Coefficients for Set-1
1 2 3
y1 -.210 1.082 .748
y2 -.283 .385 -.393
y3 -.218 -.997 1.021
y4 -.250 .089 -1.167
y5 -.216 -.531 -.175
Raw Canonical Coefficients for Set-1
1 2 3
y1 -.269 1.387 .958
y2 -.367 .499 -.510
y3 -.292 -1.338 1.370
y4 -.322 .114 -1.501
y5 -.257 -.631 -.208
Standardized Canonical Coefficients for Set-2
1 2 3
z11 -.434 1.205 .585
z12 -.432 -.298 -1.383
z13 -.277 -.988 .896
Raw Canonical Coefficients for Set-2
1 2 3
z11 -.478 1.328 .645
z12 -.460 -.317 -1.473
z13 -.280 -1.001 .907
Canonical Loadings for Set-1
1 2 3
y1 -.827 .426 .301
y2 -.855 .186 -.084
y3 -.854 -.353 .310
y4 -.863 -.064 -.351
y5 -.846 -.227 -.088
Cross Loadings for Set-1
1 2 3
y1 -.545 .089 .041
y2 -.563 .039 -.011
y3 -.563 -.074 .042
y4 -.568 -.013 -.047
y5 -.557 -.047 -.012
Canonical Loadings for Set-2
1 2 3
z11 -.889 .419 .187
z12 -.902 -.123 -.415
z13 -.812 -.464 .354
Cross Loadings for Set-2
1 2 3
z11 -.585 .087 .025
z12 -.594 -.026 -.056
z13 -.535 -.097 .048
Redundancy Analysis:
Proportion of Variance of Set-1 Explained by Its Own Can. Var.
Prop Var
CV1-1 .721
CV1-2 .079
CV1-3 .065
Proportion of Variance of Set-1 Explained by Opposite Can.Var.
Prop Var
CV2-1 .313
CV2-2 .003
CV2-3 .001
Proportion of Variance of Set-2 Explained by Its Own Can. Var.
Prop Var
CV2-1 .754
CV2-2 .135
CV2-3 .111
Proportion of Variance of Set-2 Explained by Opposite Can. Var.
Prop Var
CV1-1 .327
CV1-2 .006
CV1-3 .002
------ END MATRIX -----