内容可是相当的丰富全面啊,欢迎下载。。。
Table of Contents
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Part 1 Data Mining and Knowledge Discovery Process 1
Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1. What is Data Mining? ...................................................................................... 3
2. How does Data Mining Differ from Other Approaches?................................ 5
3. Summary and Bibliographical Notes ............................................................... 6
4. Exercises ........................................................................................................... 7
Chapter 2. The Knowledge Discovery Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1. Introduction....................................................................................................... 9
2. What is the Knowledge Discovery Process? ................................................... 10
3. Knowledge Discovery Process Models............................................................ 11
4. Research Issues................................................................................................. 19
5. Summary and Bibliographical Notes ............................................................... 20
6. Exercises ........................................................................................................... 24
Part 2 Data Understanding 25
Chapter 3. Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1. Introduction....................................................................................................... 27
2. Attributes, Data Sets, and Data Storage........................................................... 27
3. Issues Concerning the Amount and Quality of Data....................................... 37
4. Summary and Bibliographical Notes ............................................................... 44
5. Exercises ........................................................................................................... 46
Chapter 4. Concepts of Learning, Classification, and Regression . . . . . . . . . . . . . . . . . . . . . . . 49
1. Introductory Comments.................................................................................... 49
2. Classification..................................................................................................... 55
3. Summary and Bibliographical Notes ............................................................... 65
4. Exercises ........................................................................................................... 66
Chapter 5. Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1. Data Representation and their Categories: General Insights........................... 69
2. Categories of Knowledge Representation........................................................ 71
3. Granularity of Data and Knowledge Representation Schemes ....................... 76
4. Sets and Interval Analysis................................................................................ 77
5. Fuzzy Sets as Human-Centric Information Granules ...................................... 78
vii
viii Table of Contents
6. Shadowed Sets .................................................................................................. 82
7. Rough Sets ........................................................................................................ 84
8. Characterization of Knowledge Representation Schemes ............................... 86
9. Levels of Granularity and Perception Perspectives ......................................... 87
10. The Concept of Granularity in Rules............................................................... 88
11. Summary and Bibliographical Notes ............................................................... 89
12. Exercises ........................................................................................................... 90
Part 3 Data Preprocessing 93
Chapter 6. Databases, Data Warehouses, and OLAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
1. Introduction....................................................................................................... 95
2. Database Management Systems and SQL ....................................................... 95
3. Data Warehouses ..............................................................................................106
4. On-Line Analytical Processing (OLAP) ..........................................................116
5. Data Warehouses and OLAP for Data Mining................................................127
6. Summary and Bibliographical Notes ...............................................................128
7. Exercises ...........................................................................................................130
Chapter 7. Feature Extraction and Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
1. Introduction.......................................................................................................133
2. Feature Extraction.............................................................................................133
3. Feature Selection ..............................................................................................207
4. Summary and Bibliographical Notes ...............................................................228
5. Exercises ...........................................................................................................230
Chapter 8. Discretization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
1. Why Discretize Data Attributes? .....................................................................235
2. Unsupervised Discretization Algorithms .........................................................237
3. Supervised Discretization Algorithms..............................................................237
4. Summary and Bibliographical Notes ...............................................................253
5. Exercises ...........................................................................................................254
Part 4 Data Mining: Methods for Constructing Data Models 255
 204# yuanwenqun