全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
1868 0
2014-10-22
pcalg: Methods for graphical models and causal inference

This package contains several functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learning are PC (for observational data without hidden variables), FCI and RFCI (for observational data with hidden variables), and GIES (for a mix of observational and interventional data without hidden variables). For causal inference the IDA algorithm and the generalized backdoor criterion is implemented.

Version:2.0-3
Depends:R (≥ 3.0.2)
Imports:graphics, utils, methods, abind, graph, RBGL, igraph, ggm, corpcor, robustbase, vcd, Rcpp
LinkingTo:Rcpp (≥ 0.11.0), RcppArmadillo, BH
Suggests:MASS, Matrix, Rgraphviz, mvtnorm, sfsmisc
Published:2014-07-01
Author:Diego Colombo, Alain Hauser, Markus Kalisch, Martin Maechler
Maintainer:Markus Kalisch <kalisch at stat.math.ethz.ch>
License:GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL:http://pcalg.r-forge.r-project.org/
NeedsCompilation:yes
Citation:pcalg citation info
Materials:NEWS ChangeLog
In views:gR
CRAN checks:pcalg results
Downloads:
Reference manual:pcalg.pdf
Vignettes:Causal Inference: The R package pcalg
Package source:pcalg_2.0-3.tar.gz
Windows binaries:r-devel: pcalg_2.0-3.zip, r-release: pcalg_2.0-3.zip, r-oldrel: pcalg_2.0-3.zip
OS X Snow Leopard binaries:r-release: pcalg_2.0-3.tgz, r-oldrel: pcalg_2.0-3.tgz
OS X Mavericks binaries:r-release: pcalg_2.0-3.tgz
Old sources:pcalg archive

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群