Item Response Theory clearly describes the most recently developed IRT models and furnishes detailed explanations of algorithms that can be used to estimate the item or ability parameters under various IRT models.It includes discussions on issues related to statistical theory, numerical methods, and the mechanics of computer programs for parameter estimation, which help to build a clear understanding of the computational demands and challenges of IRT estimation procedures.
- Publisher: Marcel Dekker Inc
- title: Item Response Theory: Parameter Estimation Techniques
- Author: Frank B. Baker
- Series: Statistics: A Series of Textbooks and Monographs
- pages: 424
- Language: English
- ISBN: 0824758250
- Contents
- 1.The Item Characteristic Curve: Dichotomous Response
- 2.Estimating the Parameters of an Item Characteristic Curve
- 3.Maximum Likelihood Estimation of Examinee Ability
- 4.Maximum Likelihood Procedures for Estimating Both Ability and Item Parameters
- 5.The Rasch Model
- 6.Marginal Maximum Likelihood Estimation and an EM Algorithm
- 7.Bayesian Parameter Estimation Procedures
- 8.The Graded Item Response
- 9. Nominally Scored Items
- Appendix
- PS:本文件格式为.DJVU格式,需要专门的阅读器,阅读方法:1.打开阅读器;2.点击文件菜单中的OPEN,选择文件所在的路径,选择阅读的文件,就可以打开文件进行阅读。我已把阅读.DJVU格式文件的阅读器一同传到附件。