依照帮忙文件,
Setup
. webuse sysdsn1
Fit multinomial logistic regression model
. mlogit insure age male nonwhite i.site
Same as above, but use 2 as the base outcome
. mlogit insure age male nonwhite i.site, base(2)
Replay, reporting relative-risk ratios
. mlogit, rrr
可以得到如下relative-risk ratios
如何解读下面这张表?
Multinomial logistic regression Number of obs = 615
LR chi2(10) = 42.99
Prob > chi2 = 0.0000
Log likelihood = -534.36165 Pseudo R2 = 0.0387
insure RRR Std. Err. z P>z [95% Conf. Interval]
Indemnity
age 1.011814 .0062678 1.90 0.058 .9996039 1.024174
male .5702426 .1156147 -2.77 0.006 .3832494 .8484726
nonwhite .3772766 .0891585 -4.12 0.000 .237412 .5995383
site
2 .8931186 .1877249 -0.54 0.591 .5915546 1.348415
3 1.800362 .4103658 2.58 0.010 1.151705 2.814353
_cons .7635988 .2507981 -0.82 0.412 .4011389 1.453569
Prepaid (base outcome)
Uninsure
age 1.003957 .0116453 0.34 0.734 .9813898 1.027042
male .8959741 .3271993 -0.30 0.764 .4379722 1.832923
nonwhite .4687349 .1966699 -1.81 0.071 .2059604 1.06677
site
2 .2659097 .1249232 -2.82 0.005 .1058872 .6677667
3 1.462541 .5452629 1.02 0.308 .7043106 3.037051
_cons .21084 .1257299 -2.61 0.009 .0655175 .6784985