\[T_1=\sum_{i=1}^n a_i x_i, \sum_{i=1}^n a_i =1\]
\[T_2=\sum_{i=1}^n b_i x_i, \sum_{i=1}^n b_i =1\]T1和T2都是线性无偏估计量,不妨设
\[E(x)=\mu=0\]
则
\[cor(T_1, T_2) = \frac{\sum_{i=1}^n a_i b_i}{\sqrt{\sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2}}\]
取
\[b_i = 1/n\]
\[cor(T_1, T_2) = \sqrt{\frac{\frac{1}{n}}{\sum_{i=1}^n a_i^2}}\]