数据如下:
2600.37 2633.18 2707.44 2760.69 2760.74 2789.85
2803.45 2824.42 2824.89 2842.68 3063.69 3122.46
3180.64 3192.61 3243.88 3384.38 3398.09 3455.98
3546.67 3560.21 3562.33 3580.14 3674.28 3836.51
3928.71 4249.31 4296.22 4892.58 4934.05 5056.68
6125.45
其0.25,0.5,0.75分位数为
2824.655 3384.380 3755.395
根据R语言中boxplot的说明,其the extreme of upper whisker或者是最大值,
或者是0.75分位数与0.25分位数的差(IQR)*1.5+0.75分位数。
而R语言给出的计算结果为5056.680。
亲自计算的结果为5151.505.什么原因啊?
代码如下:
x<-c(2600.37, 2633.18, 2707.44, 2760.69, 2760.74, 2789.85, 2803.45,
2824.42, 2824.89, 2842.68, 3063.69, 3122.46, 3180.64, 3192.61,
3243.88, 3384.38, 3398.09, 3455.98, 3546.67, 3560.21, 3562.33,
3580.14, 3674.28, 3836.51, 3928.71, 4249.31, 4296.22, 4892.58,
4934.05, 5056.68, 6125.45)
quan<-quantile(x,prob=c(0.25,0.5,0.75))
(quan[3]-quan[1])*1.5+quan[3]
boxplot(x)$stats[5]