全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 金融工程(数量金融)与金融衍生品
1923 2
2015-02-28
Optimal Stochastic Control Stochastic Target Problems and Backward SDE by Nizar Touzi

  • ​Provides a self-contained presentation of the recent developments in Stochastic target problems which cannot be found in any other monograph
  • Approaches quadratic backward stochastic differential equations following the point of view of Tevzadze and presented in a way to maximize the ease of understanding
  • Contains relevant examples from finance, including the Nash equilibrium example​

This book collects some recent developments in stochastic control theory with applications to financial mathematics. In the first part of the volume, standard stochastic control problems are addressed from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on regularity issues and, in particular, on the behavior of the value function near the boundary. Then a quick review of the main tools from viscosity solutions allowing one to overcome all regularity problems is provided.


The second part is devoted to the class of stochastic target problems, which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows; namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging.


The third part presents an overview of backward stochastic differential equations and their extensions to the quadratic case. Backward stochastic differential equations are intimately related to the stochastic version of Pontryagin’s maximum principle and can be viewed as a strong version of stochastic target problems in the non-Markov context. The main applications to the hedging problem under market imperfections, the optimal investment problem in the exponential or power expected utility framework, and some recent developments in the context of a Nash equilibrium model for interacting investors, are presented.


The book concludes with a review of the numerical approximation techniques for nonlinear partial differential equations based on monotonic schemes methods in the theory of viscosity solutions.


Content Level » Research

Keywords » backwards stochastic differential equations - dynamic programming - financial mathematics - stochastic control problems - stochastic control theory - viscosity solutions



附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-2-28 02:54:51
PDF文檔。很清晰
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2023-1-13 22:40:48
点个赞感谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群