第一节 零和游戏原理简介
零和游戏又被称为游戏理论或零和博弈,源于博弈论(game theory)。是指一项游戏中,游戏者有输有赢,一方所赢正是另一方所输,而游戏的总成绩永远为零。零和游戏的内容如下:两人对弈,总会有一个赢,一个输,如果我们把获胜计算为得1分,而输棋为-1分。则若A获胜次数为N,B的失败次数必然也为N。若A失败的次数为M,则B获胜的次数必然为M。这样,A的总分为(N-M),B的总分为(M-N),显然(N-M)+(M-N)=0,这就是零和游戏的数学表达式。

图5-1 零和游戏
现在广泛用于有赢家必有输家的竞争与对抗。“零和游戏规则”越来越受到重视,因为人类社会中有许多与“零和游戏”相类似的局面。与“零和”对应,现在也常用“双赢”概念。“双赢”的基本理论就是“利己”不“损人”,通过谈判、合作达到皆大欢喜的结果。
零和游戏之所以广受关注,主要是因为人们发现在社会的方方面面都能发现与“零和游戏”类似的局面,胜利者的光荣后往往隐藏着失败者的辛酸和苦涩。从个人到国家,从政治到经济,似乎无不验证了世界正是一个巨大的零和游戏场。这种理论认为,世界是一个封闭的系统,财富、资源、机遇都是有限的,个别人、个别地区和个别国家财富的增加必然意味着对其他人、其他地区和国家的掠夺,这是一个邪恶进化论式的弱肉强食的世界。我们大肆开发利用煤炭石油资源,留给后人的便越来越少;研究生产了大量的转基因产品,一些新的病毒也跟着冒了出来。
但20世纪以来,人类在经历了两次世界大战、经济的高速增长、科技进步、全球一体化以及日益严重的环境污染之后,“零和游戏”观念正逐渐被“双赢”观念所取代。在竞争的社会中,人们开始认识到“利己”不一定要建立在“损人”的基础上。领导者要善于跳出“零和”的圈子,寻找能够实现“双赢”的机遇和突破口,防止负面影响抵消正面成绩。批评下属如何才能做到使其接受而不抵触,发展经济如何才能做到不损害环境,开展竞争如何使自己胜出而不让对方受到伤害,这些都是每一个为官者应该仔细思考的问题。有效合作,得到的是皆大欢喜的结局。从零和走向正和,要求各方要有真诚合作的精神和勇气,遵守游戏规则,否则“双赢”的局面就不会出现,最终吃亏的还是合作者自己。
第二节 零和游戏的意义
对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈:好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。
在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解”或“平衡”,也就是对参与双方来说都最“合理”、最优的具体策略?怎样才是合理?应用传统决定论中的“最小最大”准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“最小最大解”。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在于,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个著名的最小最大定理所体现的基本“理性”思想是“抱最好的希望,做最坏的打算”。
虽然零和博弈理论的解决具有重大的意义,但作为一个理论来说,它应用于实践的范围是有限的。零和博弈主要的局限性有二,一是在各种社会活动中,常常有多方参与而不是只有两方;二是参与各方相互作用的结果并不一定有人得利就有人失利,整个群体可能具有大于零或小于零的净获利。对于后者,历史上最经典的案例就是“囚徒困境”: 警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检控对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。若二人都保持沉默(相关术语称互相“合作”),则二人同样判监1年。若二人都互相检举(相关术语称互相“背叛”),则二人同样判监8年。
如同博弈论的其他例证,囚徒困境假定每个参与者(即“囚徒”)都是利己的,即都寻求最大自身利益,而不关心另一参与者的利益。参与者某一策略所得利益,如果在任何情况下都比其他策略要低的话,此策略称为“严格劣势”,理性的参与者绝不会选择。另外,没有任何其他力量干预个人决策,参与者可完全按照自己意愿选择策略。
囚徒到底应该选择哪一项策略,才能将自己个人的刑期缩至最短?两名囚徒由于隔绝监禁,并不知道对方选择;而即使他们能交谈,还是未必能够尽信对方不会反口。就个人的理性选择而言,检举背叛对方所得刑期,总比沉默要来得低。试设想困境中两名理性囚徒会如何作出选择:
若对方沉默、背叛会让我获释,所以会选择背叛。
若对方背叛指控我,我也要指控对方才能得到较低的刑期,所以也是会选择背叛。
二人面对的情况一样,所以二人的理性思考都会得出相同的结论——选择背叛。背叛是两种策略之中的支配性策略。因此,这场博弈中唯一可能达到的纳什均衡,就是双方参与者都背叛对方,结果二人同样服刑8年。
第三节 零和游戏在现实中的应用
1、零和游戏与金融市场
零和博弈是博弈过程的最基本模型。理想的零和博弈对于金融市场有重要意义。
在金融市场实际趋势运行中,理想零和博弈的全过程接近于一个半圆。当然,所谓半圆,与观察者制定坐标的数值单位有关,如果大幅压缩时间单位,这个半圆看起来就象抛物线;如果大幅扩展时间单位,路线又象一段扁扁的圆弧。因此,在上面表达最高点的时候,提出“公认的相关系数”概念。在这个相关系数引导下,最高点就是一个明确的数值,也就排除了观察坐标绘制过程的伸缩带来的影响。
理想零和博弈,从金融趋势的演变角度来看,最终将构成核心因子。混沌经济学研究者一直希望在证券市场寻找到主宰世界命运的“混沌因子”,事实上,所有金融市场的“混沌因子”就是这么一个理想零和博弈的半圆。而最终,一个半圆的小泡影,也将幻化出五光十色的大千世界,其寿命成千上万年,或者更长。这个小泡影,带有“真善美”的天然属性。
2、零和游戏与公司治理
公司治理中的零和游戏并非没有一个均衡点,可以从对手之间的博弈转变为正当管理与不正当管理之间的此消彼长,由此避免双方的对抗。正当管理与不正当管理的零和游戏中,正当管理的成份多一点,不正当管理的成份就少一点,反过来也是一样,两者之间存在着零和关系。管理者的精力是有限的,当他把精力过多的用在不正当管理的歪门邪道上时,就会严重影响到正当管理的艰苦卓绝的努力。因此,通过反对不正当管理来完成公司治理的任务,从而促进正当管理,对于把企业蛋糕做得更大,是不可或缺的。
首先,它可以避免所有者和其他相关利益者一方在零和游戏中处于必输的地位。在零和游戏中,管理者一方在信息不对称中处于优势地位,再加上其实际控制着人流、物流、资金流,因而在内部博弈中总是稳操胜券。作为对手的所有者和其他相关利益者一方,要想改变这种被动局面,通过公司治理加以抗衡总是必要的。其次,为反对不正当管理而付出一定成本是合算的。通过建立健全公司治理机制,反对不正当管理,难免要付出一定的成本,但它肯定是在可以承受的范围之内,与在零和游戏中必输的份额相比,与企业资产可能被掏空相比,付出这种成本还是合算的。再次,付出的必要成本使得企业“蛋糕做得更大”更有希望。反对不正当管理至少可以使管理者在内部“零和游戏”中获利的行为得到遏制,通过这种有效的工作使管理者在内部零和游戏中失去优势之后,就有望促使其将自己的聪明才智用在把“蛋糕做得更大”上,因为那样同样可以使他们个人所得的绝对数额更多。
从博弈论的研究来看,解决零和游戏问题的出路在于参与博弈者从零和走向双赢或者多赢,但是其前提必须摆脱零和游戏的思维定势。在企业管理中也是一样,两权分离的公司制发展轨迹不可逆转,而内部零和游戏又会产生内耗,解决的办法与其寄希望于大家在“零和游戏”中握手言和,不如让经营管理者感到实施不正当管理得不偿失,知难而退,一致对外,把企业利益的蛋糕做得更大。