第4题试解:\[\sin \sqrt{x+1}-\sin \sqrt{x-1}=2\cos \frac{\sqrt{x+1}+\sqrt{x-1}}{2}\sin \frac{\sqrt{x+1}-\sqrt{x-1}}{2}\]
因为 cos()为一有界量。所以考虑sin()在\[x\rightarrow \infty \]明的值
\[\sin \frac{\sqrt{x+1}-\sqrt{x-1}}{2}=\sin \frac{2}{2\left ( \sqrt{x+1} +\sqrt{x-1}\right )}\sim \frac{1}{\sqrt{x+1}+\sqrt{x-1}},\left ( x\rightarrow \infty \right )\]
原式=2*有界量*无帘小量=0,\[\left ( x\rightarrow \infty \right )\]