全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 数据分析与数据挖掘
9620 14
2015-08-07
数据挖掘 统计
Hastie.pdf
大小:(12.59 MB)

只需: 5 个论坛币  马上下载



作者:  Trevor Hastie
          Robert Tibshirani
          Jerome Friedman
          Second Edition
出版社: Springer

1 Introduction
2 Overview of Supervised Learning
3 Linear Methods for Regression
4 Linear Methods for Classification
5 Basis Expansions and Regularization
6 Kernel Smoothing Methods
7 Model Assessment and Selection
8 Model Inference and Averaging
9 Additive Models, Trees, and Related Methods
10 Boosting and Additive Trees
11 Neural Networks
12 Support Vector Machines and
Flexible Discriminants

13 Prototype Methods and Nearest-Neighbors
14 Unsupervised Learning
15 Random Forests
16 Ensemble Learning
17 Undirected Graphical Models
18 High-Dimensional Problems:

QQ截图20150807034848.png
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-8-7 14:51:18
The field of Statistics is constantly challenged by the problems that science
and industry brings to its door. In the early days, these problems often came
from agricultural and industrial experiments and were relatively small in
scope. With the advent of computers and the information age, statistical
problems have exploded both in size and complexity. Challenges in the
areas of data storage, organization and searching have led to the new field
of “data mining”; statistical and computational problems in biology and
medicine have created “bioinformatics.” Vast amounts of data are being
generated in many fields, and the statistician’s job is to make sense of it
all: to extract important patterns and trends, and understand “what the
data says.” We call this learning from data.
The challenges in learning from data have led to a revolution in the statistical sciences. Since computation plays such a key role, it is not surprising
that much of this new development has been done by researchers in other
fields such as computer science and engineering.
The learning problems that we consider can be roughly categorized as
either supervised or unsupervised. In supervised learning, the goal is to predict the value of an outcome measure based on a number of input measures;
in unsupervised learning, there is no outcome measure, and the goal is to
describe the associations and patterns among a set of input measures.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-7 16:21:45
This book is free to download from authors' website.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-7 16:23:34
Here it is:
http://statweb.stanford.edu/~tibs/ElemStatLearn/
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-7 16:25:25
Whoever want this book just go there, no need to buy it here.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-7 17:05:15
Crsky7 发表于 2015-8-7 16:25
Whoever want this book just go there, no need to buy it here.
Great, Thank you
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群