全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
4433 20
2015-08-07
【2012】 Theoretical foundations of digital imaging using MATLAB
Theoretical foundations
Book 图书名称: Theoretical foundations of digital imaging using MATLAB
Author 作者: Leonid P. Yaroslavsky
Publisher 出版社: CRC Press
Page 页数: 499
Publishing Date 出版时间: Nov 26, 2012                        
Language 语言: English
Size 大小: 12  MB
Format 格式:pdf 文字版
ISBN: 9781439861417, 1439861412, 9781466587687, 1466587687, 978-1-4665-9219-3, 1466592192
Edition:第1版搜索过论坛,没有该文档


With the ubiquitous use of digital imaging, a new profession has emerged: imaging engineering. Designed for newcomers to imaging science and engineering, Theoretical Foundations of Digital Imaging Using MATLAB® treats the theory of digital imaging as a specific branch of science. It covers the subject in its entirety, from image formation to image perfecting.


Based on the author’s 50 years of working and teaching in the field, the text first addresses the problem of converting images into digital signals that can be stored, transmitted, and processed on digital computers. It then explains how to adequately represent image transformations on computers. After presenting several examples of computational imaging, including numerical reconstruction of holograms and virtual image formation through computer-generated display holograms, the author introduces methods for image perfect resampling and building continuous image models. He also examines the fundamental problem of the optimal estimation of image parameters, such as how to localize targets in images. The book concludes with a comprehensive discussion of linear and nonlinear filtering methods for image perfecting and enhancement.


Helping you master digital imaging, this book presents a unified theoretical basis for understanding and designing methods of imaging and image processing. To facilitate a deeper understanding of the major results, it offers a number of exercises supported by MATLAB programs, with the code available at www.crcpress.com.


== Table of contents ==
Content: Introduction Imaging Goes Digital Mathematical Preliminaries Mathematical Models in Imaging Signal Transformations Imaging Systems and Integral Transforms Statistical Models of Signals and Transformations Image Digitization Principles of Signal Digitization Signal Discretization Image Sampling Alternative Methods of Discretization in Imaging Devices Single Scalar Quantization Basics of Image Data Compression Basics of Statistical Coding Discrete Signal Transformations Basic Principles of Discrete Representation of Signal Transformations Discrete Representation of the Convolution Integral Discrete Representation of Fourier Integral Transform Discrete Representation of Fresnel Integral Transform Discrete Representation of Kirchhoff Integral Hadamard, Walsh, and Wavelet Transforms Discrete Sliding Window Transforms and "Time-Frequency" Signal Representation Digital Image Formation and Computational Imaging Image Recovery from Sparse or Nonuniformly Sampled Data Digital Image Formation by Means of Numerical Reconstruction of Holograms Computer-Generated Display Holography Computational Imaging Using Optics-Less Lambertian Sensors Image Resampling and Building Continuous Image Models Perfect Resampling Filter Fast Algorithms for Discrete Sinc Interpolation and Their Applications Discrete Sinc Interpolation versus Other Interpolation Methods: Performance Comparison Numerical Differentiation and Integration Local ("Elastic") Image Resampling: Sliding Window Discrete Sinc Interpolation Algorithms Image Data Resampling for Image Reconstruction from Projections Image Parameter Estimation: Case Study-Localization of Objects in Images Localization of Target Objects in the Presence of Additive Gaussian Noise Target Localization in Cluttered Images Image Perfecting Image Perfecting as a Processing Task Possible Approaches to Restoration of Images Distorted by Blur and Contaminated by Noise MMSE-Optimal Linear Filters for Image Restoration Sliding Window Transform Domain Adaptive Image Restoration Multicomponent Image Restoration and Data Fusion Filtering Impulse Noise Correcting Image Grayscale Nonlinear Distortions Nonlinear Filters for Image Perfecting Index Exercises and References appear at the end of each chapter.


== 回帖见免费下载 ==


声明: 本资源仅供学术研究参考之用,发布者不负任何法律责任,敬请下载者支持购买正版。
提倡免费分享! 我发全部免费的,分文不收 来看看 ...
你也可关注我  马上加关注

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-8-7 17:02:58
应助 https://bbs.pinggu.org/thread-3785767-1-1.html
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-7 17:06:34
大师辛苦,帮帮顶
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-7 17:08:12
赞一个,已奖励
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-7 17:10:58
kychan 发表于 2015-8-7 17:02
应助 https://bbs.pinggu.org/thread-3785767-1-1.html
大师不但免费,而且古道热肠,
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-7 17:11:43
为免费大师kychan点赞喝彩:
提倡免费分享! 我发全部免费的,分文不收 来看看 ...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群