全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
7475 64
2015-09-14
图书名称:Clean Data - Data Science Strategies for Tackling Dirty Data
作者:
Megan Squire
出版社:Packt Publishing
页数:267
出版时间:
September 2015                           
语言:English

格式:pdf
内容简介:
Key Features Grow your data science expertise by filling your toolbox with proven strategies for a wide variety of cleaning challengesFamiliarize yourself with the crucial data cleaning processes, and share your own clean data sets with othersComplete real-world projects using data from Twitter and Stack OverflowBook Description
Is much of your time spent doing tedious tasks such as cleaning dirty data, accounting for lost data, and preparing data to be used by others? If so, then having the right tools makes a critical difference, and will be a great investment as you grow your data science expertise.

The book starts by highlighting the importance of data cleaning in data science, and will show you how to reap rewards from reforming your cleaning process. Next, you will cement your knowledge of the basic concepts that the rest of the book relies on: file formats, data types, and character encodings. You will also learn how to extract and clean data stored in RDBMS, web files, and PDF documents, through practical examples.

At the end of the book, you will be given a chance to tackle a couple of real-world projects.
What you will learnUnderstand the role of data cleaning in the overall data science processLearn the basics of file formats, data types, and character encodings to clean data properlyMaster critical features of the spreadsheet and text editor for organizing and manipulating dataConvert data from one common format to another, including JSON, CSV, and some special-purpose formatsImplement three different strategies for parsing and cleaning data found in HTML files on the WebReveal the mysteries of PDF documents and learn how to pull out just the data you wantDevelop a range of solutions for detecting and cleaning bad data stored in an RDBMSCreate your own clean data sets that can be packaged, licensed, and shared with othersUse the tools from this book to complete two real-world projects using data from Twitter and Stack OverflowAbout the Author
Megan Squire is a professor of computing sciences at Elon University. She has been collecting and cleaning dirty data for two decades. She is also the leader of FLOSSmole.org, a research project to collect data and analyze it in order to learn how free, libre, and open source software is made.

回复免费:

本帖隐藏的内容

Clean Data - Data Science Strategies for Tackling Dirty Data.rar
大小:(5.52 MB)

 马上下载

本附件包括:

  • Clean Data - Data Science Strategies for Tackling Dirty Data.pdf




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-9-14 21:32:03
看看看看
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-9-14 21:36:12
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-9-14 21:52:32
Great, Thanks
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-9-14 21:59:35
Clean Data - Data Science Strategies for Tackling Dirty Data
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-9-14 22:18:40
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群