全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 LATEX论坛
1343 1
2015-11-10
High dimensional ordinary least squares projection for screening variables1d
[/url][url=]






由 Xiangyu Wang, Chenlei Leng[url=][/url] 通过 jrss b[url=][/url]




SummaryVariable selection is a challenging issue in statistical applications when the number of predictors p far exceeds the number of observations n. In this ultrahigh dimensional setting, the sure independence screening procedure was introduced to reduce the dimensionality significantly by preserving the true model with overwhelming probability, before a refined second-stage analysis. However, the aforementioned sure screening property strongly relies on the assumption that the important variables in the model have large marginal correlations with the response, which rarely holds in reality. To overcome this, we propose a novel and simple screening technique called high dimensional ordinary least squares projection which we refer to as ‘HOLP’. We show that HOLP has the sure screening property and gives consistent variable selection without the strong correlation assumption, and it has a low computational complexity. A ridge-type HOLP procedure is also discussed. Simulation study shows that HOLP performs competitively compared with many other marginal correlation-based methods. An application to a mammalian eye disease data set illustrates the attractiveness of HOLP.



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-11-10 23:23:43
thanks for sharing
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群