281161.rar
大小:(5.57 MB)
马上下载
本附件包括:
- Monte Carlo Methods In Finance.djvu
金融中的蒙特卡罗方法Monte Carlo Methods In Finance【DJVU格式】
作者: Peter Jaeckel
isbn: 047149741X
书名: Monte Carlo Methods in Finance
出版社: John Wiley & Sons
装帧: Hardcover
出版年: 2002-04-11
简介 · · · · · · An invaluable resource for quantitative analysts who need to run models that assist in option pricing and risk management. This concise, practical hands on guide to Monte Carlo simulation introduces standard and advanced methods to the increasing complexity of derivatives portfolios. Ranging from pricing more complex derivatives, such as American and Asian options, to measuring Value at Risk, or modelling complex market dynamics, simulation is the only method general enough to capture the complexity and Monte Carlo simulation is the best pricing and risk management method available.
The book is packed with numerous examples using real world data and is supplied with a CD to aid in the use of the examples.
目录
Preface
Acknowledgements
Mathematical Notation
1 Introduction
2 The Mathematics Behind Monte Carlo Methods
2.1 A Few Basic Terms in Probability and Statistics
2.2 Monte Carlo Simulations
2.2.1 Monte Carlo Supremacy
2.2.2 Multi-dimensional Integration
2.3 Some Common Distributions
2.4 Kolmogorov's Strong Law
2.5 The Central Limit Theorem
2.6 The Continuous Mapping Theorem
2.7 Error Estimation for Monte Cm'1o Methods
2.8 The Feynman-Kac Theorem
2.9 The Moore-Penrose Pseudo-inverse
3 Stochastic Dynamics
3.1 Brownian Motion
3.2 It6's Lemma
3.3 Normal Processes
3.4 Lognormal Processes
3.5 The Markovian Wiener Process Embedding Dimension
3.6 Bessel Processes
3.7 Constant Elasticity Of Variance Processes
3.8 Displaced Diffusion
4 Process-driven Sampling
4.1 Strong versus Weak Convergence
4.2 Numerical Solutions
4.2.1 The Euler Scheme
4.2.2 The Milsrein Scheme
4.2.3 Transformations
4.2.4 Predictor-Corrector
4.3 Spurious Paths
4.4 Sta'ong Convergence for Euler and Milsrein
5 Correlation tnd Co-movement
5.1 Measures for Co-dependence
5.2 Copulte
5.2.1 The Gaussian Copula
5.2.2 The t-Copu!a
5.2.3 Archimedean Copulae
6 Salvaging a Linear Correlation Matrix
6. I Hypersphere Decomposition
6.2 Spectral Decomposition
6.3 Angular Decomposition of Lower Triangular Fova
6.4 Examples
6.5 Angular Coordinates on a Hypersphere of Unit Radius
7 Pseudo-random Numbers
7.1 Chaos
7.2 The Mid-square Method
7.3 Congruential Generation
7.4 Ran0 To Ran3
7.5 The Mersenne Twister
7.6 Which One to Use?
8 Low-discrepancy Numbers
8.1 Discrepancy
8.2 Halton Numbers
8.3 Sobol' Numbers
8.3.1 Primitive Polynomials Modulo Two
8.3.2 The Construction of Sobol' Numbers
8.3.3 The Gray Code
8.3.4 The Initialisation of Sobol' Numbers
8.4 Niederreiter (1988) Numbers
8.5 Pairwise Projections
8.6 Empirical Discrepancies
8.7 The Number of Iterations
8.8 Appendix
8.8.1 Explicit Formula for the L2-norm Discrepancy on the
Unit Hypercube
8.8.2 Expected L2-norm Discrepancy of Truly Random Numbers
9 Non-uniform Variates
9. I Inversion of the Cumulative Probability Function
9.2 Using a Sampler Density
9.2.1 Importance Sampling
9.2.2 Rejection Sampling
9.3 Normal Variates
9.3.1 The Box-Muller Method
9.3.2 The Neave Effect
9.4 Simulating Multivariate Copula Draws
10 Variance Reduction Techniques
10.1 Antithetic Sampling
10.2 Vail.ate Recycling
10.3 Control Variates
10.4 Stratified Sampling
10.5 Importance Sampling
10.6 Moment Matching
10.7 Latin Hypercube Sampling
10.8 Path Construction
10.8.1 Incremental
10.8.2 Spectral
10.8.3 The Brownian Bridge
10.8.4 A Comparison of Path Construction Methods
10.8.5 Multivariate Path Construction
10.9 Appendix
10.9.1 Eigenvalues and Eigenvectors
of a Discrete-time Covariance Matrix
10.9.2 The Conditional Distribution of the Brownian Bridge
11 Greeks
11.1 Importance Of Greeks
11.2 An Up-Out-Call Option
11.3 Finite Differencing with Path Recycling
11.4 Finite Differencing with Importance Sampling
11.5 Pathwise Differentiation
11.6 The Likelihood Ratio Method
11.7 Comparative Figures
11.8 Summary
11.9 Appendix
11.9.1 The Likelihood Ratio Formula for Vega
11.9.2 The Likelihood Ratio Formula for Rho
12 Monte Carlo in the BGM/J Framework
12.1 The Brace-Gatarek-Musiela/Jamshidian Market Model
12.2 Factorisation
12.3 Bermudan Swaptions
12.4 Calibration to European Swaptions
12.5 The Predictor-Corrector Scheme
12.6 Heuristics of the Exercise Boundary
12.7 Exercise Boundary Parametrisation
12.8 The Algorithm
12.9 Numerical Results
12.I0 Summary
13 Non-recombining Trees
13.1 Introduction
13.2 Evolving the Forward Rates
13.3 Optimal Simplex Alignment
13.4 Implementation
13.5 Convergence Perfmance
13.6 Variance Matching
13.7 Exact Martingale Conditioning
13.8 Clustering
I3.9 A Simple Example
13.10 Summary
14 Miscellanea
14.1 Interpolation of the Term Structure of Implied Volatility
14.2 Watch Your CPU Usage
14.3 Numerical Overflow and Underflow
14.4 A Single Number or a Convergence Diagram?
14.5 Embedded Path Creation
14.6 How Slow is v_.xp ( ) ?
14.7 Parallel Computing And Multi-threading
Bibliography
Index
[此贴子已经被作者于2008-12-28 16:55:08编辑过]