malian 发表于 2005-9-6 12:27 
3.3时间序列分析3.3.11. 基本概念按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期 ...
(3) 识别条件
平稳时间序列的偏相关系数φk和自相关系数rk均不截尾,但较快收敛到0,则该时间序列可能是ARMA(p,q)模型。实际问题中,多数要用此模型。因此建模解模的主要工作是求解p、q和φ、θ的值,检验εt和yt的值。
(4) 模型阶数
AIC准则:最小信息准则,同时给出ARMA模型阶数和参数的最佳估计,适用于样本数据较少的问题。目的是判断预测目标的发展过程与哪一随机过程最为接近。因为只有当样本量足够大时,样本的自相关函数才非常接近母体的自相关函数。具体运用时,在规定范围内使模型阶数从低到高,分别计算AIC值,最后确定使其值最小的阶数是模型的合适阶数。
模型参数最大似然估计时AIC=(n-d)logσ2+2(p+q+2)
模型参数最小二乘估计时AIC=nlogσ2+(p+q+1)logn
式中:n为样本数,σ2为拟合残差平方和,d、p、q为参数。
其中:p、q范围上线是n较小时取n的比例,n较大时取logn的倍数。
实际应用中p、q一般不超过2。
4. 自回归综合移动平均ARIMA(p,d,q)模型
(1)模型识别
平稳时间序列的偏相关系数φk和自相关系数rk均不截尾,且缓慢衰减收敛,则该时间序列可能是ARIMA(p,d,q)模型。
(2)模型含义
模型形式类似ARMA(p,q)模型,但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用ARMA(p,q)模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中d一般不超过2。
若时间序列存在周期性波动,则可按时间周期进行差分,目的是将随机误差有长久影响的时间序列变成仅有暂时影响的时间序列。
即差分处理后新序列符合ARMA(p,q)模型,原序列符合ARIMA(p,d,q)模型。
3.3.3建模解模过程
1. 数据检验
检验时间序列样本的平稳性、正态性、周期性、零均值,进行必要的数据处理变换。
(1)作直方图:检验正态性、零均值。
按图形Graphs—直方图Histogram的顺序打开如图3.15所示的对话框。
图3.15
将样本数据送入变量Variable框,选中显示正态曲线Display normal curve项,点击OK运行,输出带正态曲线的直方图,如图3.16所示。
图3.16
从图中看出:标准差不为1、均值近似为0,可能需要进行数据变换。
(2)作相关图:检验平稳性、周期性。
按图形Graphs—时间序列Time Series—自相关Autocorrelations的顺序打开如图3.17所示的对话框。
图3.17
将样本数据送入变量Variable框,选中自相关Autocorrelations和偏自相关Partial Autocorrelations项,暂不选数据转换Transform项,点击设置项Options,出现如图3.18所示对话框。
图3.18
因为一般要求时间序列样本数据n>50,滞后周期k<n/4,所以此处控制最大滞后数值Maximum Number of Lags设定为12。点击继续Continue返回自相关主对话框后,点击OK运行系统,输出自相关图如图3.19所示。
图3.19
从图中看出;样本序列数据的自相关系数在某一固定水平线附近摆动,且按周期性逐渐衰减,所以该时间序列基本是平稳的。
(3)数据变换:
若时间序列的正态性或平稳性不够好,则需进行数据变换。常用有差分变换(利用transform—Create Time Series)和对数变换(利用Transform—Compute)进行。一般需反复变换、比较,直到数据序列的正态性、平稳性等达到相对最佳。