全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 SAS专版
19743 7
2009-03-16

假设有如下数据集:

data a;
      input Treatment y @@;
      datalines;
1  17   1  28   1  19   1 21   1  19
1  43   1  30   1  39   1 44   1  44
1  16
2  21   2  21   2  24   2 25
2  39   2  45   2  42   2 47
2  19   2  22   2  16
3  22   3  30   3  33   3 31
3  46
3  26   3  31   3  26   3 33   3  29   3  25
;


proc glm data=a;
   class Treatment ;
   model y = Treatment/ss3;
   lsmeans Treatment/cl alpha=0.05 pdiff stderr;
run;
quit;

结果:

                                                     Least Squares Means for effect Treatment
                                                             Pr > |t| for H0: LSMean(i)=LSMean(j)

                                                                    Dependent Variable: y

                                                        i/j              1             2             3

                                                           1                        0.9833        0.8017
                                                           2        0.9833                      0.8179
                                                           3        0.8017        0.8179


                                                    Treatment        y LSMEAN      95% Confidence Limits

                                                    1               29.090909       22.873802    35.308016
                                                    2               29.181818       22.964711    35.398925
                                                    3               30.181818       23.964711    36.398925


                                                            Least Squares Means for Effect Treatment

                                                                  Difference
                                                                     Between    95% Confidence Limits for
                                                      i    j           Means       LSMean(i)-LSMean(j)

                                                      1    2       -0.090909       -8.883227     8.701408
                                                      1    3       -1.090909       -9.883227     7.701408
                                                      2    3       -1.000000       -9.792317     7.792317

删去数据集中treatment 3 的数据:


data b;
     set a;
  where treatment=1 or treatment=2;
run;


proc glm data=b;
   class Treatment ;
   model y = Treatment/ss3;
   lsmeans Treatment/cl alpha=0.05 pdiff stderr;
run;
quit;

结果为:

                                                          The GLM Procedure
                                                                      Least Squares Means

                                                                                                                                        H0:LSMean1=
                                                                                         Standard    H0:LSMEAN=0      LSMean2
                                            Treatment        y LSMEAN           Error       Pr > |t|                      Pr > |t|

                                            1              29.0909091       3.4775549         <.0001                    0.9854
                                            2              29.1818182       3.4775549         <.0001


                                                    Treatment        y LSMEAN      95% Confidence Limits

                                                    1               29.090909             21.836857    36.344962
                                                    2               29.181818             21.927766    36.435871


                                                            Least Squares Means for Effect Treatment

                                                                  Difference
                                                                     Between    95% Confidence Limits for
                                                      i    j           Means       LSMean(i)-LSMean(j)

                                                      1    2       -0.090909      -10.349689    10.167870

请问: 同样是treatment 1 和 treatment 2 进行比较,为什么两个结果中的置信区间和P值却不一样?

结果1:      (-8.883227 ,  8.701408)
结果2:      ( -10.349689, 10.167870)

请问LSmeans置信区间的计算方法是什么?

十分感谢!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-3-16 14:19:00
PDIFF这个地方应该选择,而且二者方差不一样,减少了一部分数据造成的
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-3-16 14:35:00
以下是引用爱萌在2009-3-16 14:19:00的发言:
PDIFF这个地方应该选择,而且二者方差不一样,减少了一部分数据造成的

为什么减少一组数就会改变方差和置信区间呢?

请问知不知道具体的计算方法?

谢谢!!!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-3-16 14:42:00
你可以计算,因为在lsmean过程中,方差是用残差估计的,方差变了,各种基于它的统计量必然发生变化
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-3-16 14:46:00

还有你在PDIFF=control('1','2');

这样你的结果p值都很小,但置信区间则相差不大,这时才是你驱除第3组造成残差发生变化.

你的问题到此也就圆满解决了

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-3-16 14:48:00
多谢指教!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群