用stata做mlogit
模型结果和margins的结果如下
mlogit tra1 i.sex0 edu i.agegroup lincome ltype1 occupy, base(3)
Iteration 0: log likelihood = -3555.0699
Iteration 1: log likelihood = -3424.8396
Iteration 2: log likelihood = -3416.0711
Iteration 3: log likelihood = -3415.5109
Iteration 4: log likelihood = -3415.5064
Iteration 5: log likelihood = -3415.5064
Multinomial logistic regression Number of obs = 3,893
LR chi2(12) = 279.13
Prob > chi2 = 0.0000
Log likelihood = -3415.5064 Pseudo R2 = 0.0393
------------------------------------------------------------------------------
tra1 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1 |
1.sex0 | .0339504 .0934032 0.36 0.716 -.1491165 .2170174
edu | -.3162347 .0402212 -7.86 0.000 -.3950667 -.2374027
1.agegroup | -2.027821 .5922002 -3.42 0.001 -3.188512 -.8671303
lincome | -.6399654 .1073352 -5.96 0.000 -.8503386 -.4295923
ltype1 | .0493083 .0144324 3.42 0.001 .0210212 .0775954
occupy | .0295613 .0117392 2.52 0.012 .0065529 .0525698
_cons | 8.874587 1.062146 8.36 0.000 6.792819 10.95635
-------------+----------------------------------------------------------------
2 |
1.sex0 | .2418599 .1110623 2.18 0.029 .0241818 .459538
edu | -.1802581 .0467999 -3.85 0.000 -.2719842 -.088532
1.agegroup | -1.448449 .6245565 -2.32 0.020 -2.672557 -.2243403
lincome | -.5542077 .124283 -4.46 0.000 -.797798 -.3106175
ltype1 | -.0095695 .0164545 -0.58 0.561 -.0418196 .0226807
occupy | .0304997 .013843 2.20 0.028 .003368 .0576314
_cons | 6.37812 1.186596 5.38 0.000 4.052434 8.703805
-------------+----------------------------------------------------------------
3 | (base outcome)
------------------------------------------------------------------------------
margins sex0, predict(outcome(3))
Predictive margins Number of obs = 3,893
Model VCE : OIM
Expression : Pr(tra1==3), predict(outcome(3))
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
sex0 |
0 | .1747174 .0090057 19.40 0.000 .1570665 .1923683
1 | .1629958 .0078533 20.76 0.000 .1476037 .1783879
------------------------------------------------------------------------------
我希望得到下图图片中的p值(已标黄),请问stata中哪个命令可以实现?
图片是principles of econometrics fourth edition中的案例
谢谢!