SAS-EM 决策树操作案例
摘要
1
预测模型案例概述
一家金融服务公司为客户提供房屋净值贷款。该公司在过去已经拓展了数千净值贷款服务。但是,在这些申请贷款的客户中,大约有20%的人拖欠贷款。通过使用地理、人口和金融变量,该公司希望为该项目建立预测模型判断客户是否拖欠贷款。
2
输入数据源
分析数据之后,该公司选择了12个预测变量来建立模型判断贷款申请人是否拖欠。回应变量(目标变量)标识房屋净值贷款申请人是否会拖欠贷款。变量,以及它们的模型角色、度量水平、描述,在下表中已经显示。SAMPSIO.HMEQ数据集中的变量,
SAMPSIO库中的数据集HMEQ包括5960个观测值,用来建立和比较模型。该数据集被划分为训练集、验证集和测试集,从而对数据进行分析。
3
创建处理流程图
添加结点

连接结点

定义输入数据
为了定义输入数据,右键输入数据源结点,选择打开菜单,弹出输入数据对话框。默认情况下,数据选项
卡是激活的。

点击select按钮选择数据集,

4
理解原数据样本
所有分析包在分析过程中必须定义如何使用这些变量。为了先对这些变量进行评估,EM采用元数据方式处理。默认方式下,它从原始数据集中随即抽取2000个观测样本,用这些信息给每个变量设置模型角色和度量水平。它也计算一些简单统计信息显示在附加选项卡中。如果需要更多的样本量,点击右下角的Change按钮,设置样本量。

评估这些元数据创建的赋值信息,可以选择变量选项卡查看相关信息。

从图中可以发现,Name列和Type列不可用。这些列表示来自SAS数据集的信息在这个结点中不能修改。名称必须遵循命名规范。类型分为字符型和数值型,它将影响该变量如何使用。EM使用Type的值和元数据样本中级别的数量初始化每个变量的模型角色和度量级别。
5
定义目标变量
在该分析中,BAD是一个响应变量,将BAD变量的模型角色设置为target类型。右键BAD变量的Model Role列,设置模型角色。

6
观察变量分布
我们可以根据元数据样本观察每个变量的分布情况。譬如,查看BAD变量的分布情况,右键BAD变量的Name列查看BAD的分布情况。

7
修改变量信息
为了保证剩下的变量拥有正确的模型角色和度量级别,将DEROG和DELINQ的度量级别设置为有序(Ordinal)。右键DEROG变量的Measurement列,设置为Ordinal。

8
查看描述性统计信息
点击Interval Variables选项卡和class variables选项卡可以查看变量的基本统计信息。

9
观察数据划分结点的默认设置
打开数据划分结点,默认方式下,划分选项卡是被激活的。数据划分方法显示在方法显示面板。

EM对输入数据集进行抽样,将原数据集分成训练、验证和测试数据集。默认情况下,采用简单随机抽样方法。并且,可以选择层次抽样或者自定义抽样方法。另外,还可以为初始随机抽样过程定义