xyfzjhz 发表于 2016-5-27 21:50 
如果要我试试的话,我觉得重点就在于解决pm2.5和pm10这一对因子变量的level问题,你要让pm2.5排在pm10前面, ...
library(ggplot2)
data=read.csv("e:/data_csv/pm_reduction.csv")
p=ggplot(data,aes(x=level,y=reduction))
windowsFonts(myFont1=windowsFont("Times New Roman"))
ex1=expression(bold(paste("Precipitation scavenging on PM concentrations (%)")))
ex2=expression(bold(paste(PM["2.5"])))
ex3=expression(bold(paste(PM["10"])))
p+geom_bar(aes(fill=PM),stat='identity',position = 'dodge',width=.5)+
xlab("Precipitation level (mm)")+ylab(ex1)+
scale_fill_hue(labels=c(ex3,ex2))+
scale_x_discrete(limits=c("0-1","1-5","5-10","10-25",">25"))+
theme(axis.text.x = element_text(size = 10, color = "black", face = "bold",family="myFont1"))+
theme(axis.title.x = element_text(size = 10, color = "black", face = "bold",family="myFont1"))+
theme(axis.text.y = element_text(size = 10, color = "black", face = "bold",family="myFont1"))+
theme(axis.title.y = element_text(size = 10, color = "black", face = "italic",family="myFont1"))+
theme(legend.title=element_blank())+
theme(legend.text=element_text(face="bold", family="myFont1", colour="black",size=8))+
theme(legend.position=c(0.1,0.9),legend.background=element_blank())
这是代码
level PM reduction
1 0-1 PM10 26.23091
2 1-5 PM10 33.06605
3 5-10 PM10 40.70868
4 10-25 PM10 42.19551
5 >25 PM10 50.50641
6 0-1 PM25 10.59041
7 1-5 PM25 25.78484
8 5-10 PM25 34.03266
9 10-25 PM25 42.68411
10 >25 PM25 51.23521
这是数据data
麻烦您了,万分感谢!!